Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
ปัญญาประดิษฐ์
ส่วนหนึ่งของเนื้อหา |
ปัญญาประดิษฐ์ |
---|
เป้าหมาย |
วิธีการ |
ปรัชญา |
ปัญญาประดิษฐ์ (อังกฤษ: artificial intelligence) หรือ เอไอ (AI) หมายถึงความฉลาดเทียมที่สร้างขึ้นให้กับสิ่งที่ไม่มีชีวิต ปัญญาประดิษฐ์เป็นสาขาหนึ่งในด้านวิทยาการคอมพิวเตอร์ และวิศวกรรมเป็นหลัก แต่ยังรวมถึงศาสตร์ในด้านอื่น ๆ อย่างจิตวิทยา ปรัชญา หรือชีววิทยา ซึ่งสาขาปัญญาประดิษฐ์เป็นการเรียนรู้เกี่ยวกับกระบวนการการคิด การกระทำ การให้เหตุผล การปรับตัว หรือการอนุมาน และการทำงานของสมอง แม้ว่าดังเดิมนั้นเป็นสาขาหลักในวิทยาการคอมพิวเตอร์ แต่แนวคิดหลาย ๆ อย่างในศาสตร์นี้ได้มาจากการปรับปรุงเพิ่มเติมจากศาสตร์อื่น ๆ เช่น
- การเรียนรู้ของเครื่อง นั้นมีเทคนิคการเรียนรู้ที่เรียกว่า การเรียนรู้ต้นไม้ตัดสินใจ ซึ่งประยุกต์เอาเทคนิคการอุปนัยของจอห์น สจวร์ต มิลล์ นักปรัชญาชื่อดังของอังกฤษ มาใช้
- เครือข่ายประสาทเทียมก็นำเอาแนวคิดของการทำงานของสมองของมนุษย์ มาใช้ในการแก้ปัญหาการแบ่งประเภทของข้อมูล และแก้ปัญหาอื่น ๆ ทางสถิติ เช่น การวิเคราะห์ความถดถอยหรือ การปรับเส้นโค้ง
อย่างไรก็ตาม เนื่องจากปัจจุบันวงการปัญญาประดิษฐ์ มีการพัฒนาส่วนใหญ่โดยนักวิทยาศาสตร์คอมพิวเตอร์ อีกทั้งวิชาปัญญาประดิษฐ์ ก็ต้องเรียนที่ภาควิชาคอมพิวเตอร์ของคณะวิทยาศาสตร์หรือคณะวิศวกรรมศาสตร์ เราจึงถือเอาง่าย ๆ ว่า ศาสตร์นี้เป็นสาขาของวิทยาการคอมพิวเตอร์นั่นเอง
ประวัติ
แนวคิดเรื่องเครื่องจักรที่คิดได้และสิ่งมีชีวิตเทียมนั้นมีมาตั้งแต่สมัยกรีกโบราณ เช่นหุ่นยนต์ทาลอสแห่งครีต อันเป็นหุ่นยนต์ทองแดงของเทพฮิฟีสตัส แหล่งอารยธรรมใหญ่ ๆ ของโลกมักจะเชื่อเรื่องหุ่นยนต์ที่มีความคล้ายกับมนุษย์ เช่น ในอียิปต์และกรีซ ต่อมา ช่วงกลางศตวรรษที่ 19 และ 20 สิ่งมีชีวิตเทียมเริ่มปรากฏอย่างแพร่หลายในนิยายวิทยาศาสตร์ เช่น แฟรงเกนสไตน์ของแมรี เชลลีย์ หรือ R.U.R.ของกาเรล ชาเปก แนวคิดเหล่านี้ผ่านการอภิปรายมาอย่างแพร่หลาย โดยเฉพาะในแง่ของความหวัง ความกลัว หรือความกังวลด้านศีลธรรมเนื่องจากการมีอยู่ของปัญญาประดิษฐ์
กลไกหรือการให้เหตุผลอย่างมีแบบแผน ได้รับการพัฒนาขึ้นโดยนักปรัชญาและนักวิทยาศาสตร์มาตั้งแต่สมัยโบราณ การศึกษาด้านตรรกศาสตร์นำไปสู่การคิดค้นเครื่องคำนวณอิเล็กทรอนิกส์ดิจิทัลที่โปรแกรมได้โดยอาศัยหลักการทางคณิตศาสตร์ของแอลัน ทัวริงและคนอื่น ๆ ทฤษฎีการคำนวณของทัวริงชี้ว่า เครื่องจักรที่รู้จักการสลับตัวเลขระหว่าง 0 กับ 1 สามารถเข้าใจนิรนัยทางคณิตศาสตร์ได้ หลังจากนั้น การค้นพบทางด้านประสาทวิทยา ทฤษฎีสารสนเทศ และไซเบอร์เนติกส์ รวมทั้งทฤษฎีการคำนวณของทัวริง ได้ทำให้นักวิทยาศาสตร์บางกลุ่มเริ่มสนใจพิจารณาความเป็นไปได้ของการสร้าง สมองอิเล็กทรอนิกส์ ขึ้นมาอย่างจริงจัง
สาขาปัญญาประดิษฐ์นั้นเริ่มก่อตั้งขึ้นในที่ประชุมวิชาการที่วิทยาลัยดาร์ตมัธ สหรัฐอเมริกาในช่วงหน้าร้อน ค.ศ. 1956 โดยผู้ร่วมในการประชุมครั้งนั้น ได้แก่ จอห์น แม็กคาร์ธีย์ มาร์วิน มินสกี อัลเลน นิวเวลล์ อาเธอร์ ซามูเอล และเฮอร์เบิร์ต ไซมอน ที่ได้กลายมาเป็นผู้นำทางสาขาปัญญาประดิษฐ์ในอีกหลายสิบปีต่อมา นักวิทยาศาสตร์และนักศึกษาของพวกเขาเหล่านี้เขียนโปรแกรมที่หลายคนทึ่ง ไม่ว่าจะเป็น คอมพิวเตอร์ที่สามารถเอาชนะคนเล่นหมากรุก แก้ไขปัญหาเกี่ยวกับคำด้วยพีชคณิต พิสูจน์ทฤษฎีทางตรรกวิทยา หรือแม้กระทั่งพูดภาษาอังกฤษได้ ผู้ก่อตั้งสาขาปัญญาประดิษฐ์กลุ่มนี้เชื่อมั่นในอนาคตของเทคโนโลยีใหม่นี้มาก โดยเฮอร์เบิร์ต ไซมอนคาดว่าจะมีเครื่องจักรที่สามารถทำงานทุกอย่างได้เหมือนมนุษย์ภายใน 20 ปีข้างหน้า และมาร์วิน มินสกีก็เห็นพ้องโดยการเขียนว่า "เพียงชั่วอายุคน ปัญหาของการสร้างความฉลาดเทียมจะถูกแก้ไขอย่างยั่งยืน"
อย่างไรก็ตาม นักวิทยาศาสตร์กลุ่มนี้กลับไม่ได้พิจารณาถึงความยากของปัญหาที่จะพบมากนัก ในปี ค.ศ. 1974 เซอร์ เจมส์ ไลท์ฮิลล์ ได้เขียนวิพากษ์วิจารณ์สาขาปัญญาประดิษฐ์ ประกอบกับมีแรงกดดันจากสภาคองเกรสของสหรัฐฯให้ไปให้เงินสนับสนุนโครงการมีผลผลิตออกมาเป็นรูปธรรมมากกว่า ดังนั้น รัฐบาลสหรัฐอเมริกาและสหราชอาณาจักรจึงได้ตัดงบประมาณการวิจัยที่ไร้ทิศทางของสาขาปัญญาประดิษฐไป จนเป็นยุคที่เรียกว่า หน้าหนาวของปัญญาประดิษฐ์ (AI winter) กินเวลาหลายปี ซึ่งโครงการด้านปัญญาประดิษฐ์แต่ละโครงการนั้นหาเงินทุนสนับสนุนยากมาก
ในช่วงต้นคริสต์ทศวรรษ 1980 งานวิจัยด้านปัญญาประดิษฐ์ประสบความสำเร็จในเชิงพาณิชย์เป็นครั้งแรก ด้วยระบบที่ชื่อว่า ระบบผู้เชี่ยวชาญ อันเป็นระบบคอมพิวเตอร์ที่ช่วยในการหาคำตอบ อธิบายความไม่ชัดเจน ซึ่งปกตินั้นจะใช้ผู้เชี่ยวชาญในแต่ละสาขาตอบคำถามนั้น ในปี ค.ศ. 1985 ตลาดของปัญญาประดิษฐ์ทะยานขึ้นไปแตะระดับ 1 พันล้านดอลลาร์สหรัฐ ในขณะเดียวกัน โครงการคอมพิวเตอร์รุ่นที่ 5 ของญี่ปุ่นก็ได้จุดประกายให้รัฐบาลสหรัฐอเมริกาและสหราชอาณาจักรหันมาให้เงินทุนสนับสนุนงานวิจัยในสาขาปัญญาประดิษฐ์อีกครั้ง
ในคริสต์ทศวรรษ 1990 และช่วงต้นคริสต์ศตวรรษที่ 21 ปัญญาประดิษฐ์ประสบความสำเร็จอย่างสูงแม้ว่าจะมีหลายอย่างที่อยู่เบื้องหลัง มีการนำปัญญาประดิษฐ์มาใช้ในด้านการขนส่ง การทำเหมืองข้อมูล การวินิจฉัยทางการแพทย์ และในอีกหลายสาขาหลายอุตสาหกรรม ความสำเร็จของปัญญาประดิษฐ์นั้นได้รับการผลักดันมาจากหลายปัจจัย ไม่ว่าจะเรื่องของความเร็วของคอมพิวเตอร์ที่มีการประมวลผลที่เร็วขึ้น (ตามกฎของมัวร์) การให้ความสำคัญกับการแก้ปัญหาย่อยบางปัญหา การสร้างความเชื่อมโยงระหว่างปัญญาประดิษฐ์กับสาขาอื่น ๆ ที่ทำงานอยู่กับปัญญาที่คล้าย ๆ กัน ตลอดจนความมุ่งมั่นของนักวิจัยที่ใช้วิธีการทางคณิตศาสตร์และวิทยาศาสตร์ที่มีหลักการ
เมื่อวันที่ 11 พฤษภาคม ค.ศ. 1997 เครื่องดีปบลูของบริษัทไอบีเอ็ม กลายมาเป็นคอมพิวเตอร์เครื่องแรกของโลกที่สามารถเล่นหมากรุกเอาชนะ แกรี คาสปารอฟ แชมป์โลกในขณะนั้นได้ และในเดือนกุมภาพันธ์ ค.ศ. 2011 เครื่องวัตสันของบริษัทไอบีเอ็มก็สามารถเอาชนะแชมป์รายการตอบคำถามจีโอพาร์ดีได้แบบขาดลอย นอกจากนี้ เครื่องเล่นเกมอย่าง Kinect ก็ใช้เทคโนโลยีของปัญญาประดิษฐ์ มาใช้ในการสร้างส่วนติดต่อกับผู้ใช้ผ่านทางการเคลื่อนไหวร่างกายใน 3 มิติเช่นกัน
นิยามของปัญญาประดิษฐ์
มีคำนิยามของปัญญาประดิษฐ์มากมายหลากหลาย ซึ่งสามารถจัดแบ่งออกเป็น 4 ประเภทโดยมองใน 2 มิติ ได้แก่
- ระหว่าง นิยามที่เน้นระบบที่เลียนแบบมนุษย์ กับ นิยามที่เน้นระบบที่ระบบที่มีเหตุผล (แต่ไม่จำเป็นต้องเหมือนมนุษย์)
- ระหว่าง นิยามที่เน้นความคิดเป็นหลัก กับ นิยามที่เน้นการกระทำเป็นหลัก
ปัจจุบันงานวิจัยหลัก ๆ ของปัญญาประดิษฐ์จะมีแนวคิดในรูปที่เน้นเหตุผลเป็นหลัก เนื่องจากการนำปัญญาประดิษฐ์ไปประยุกต์ใช้แก้ปัญหา ไม่จำเป็นต้องอาศัยอารมณ์หรือความรู้สึกของมนุษย์ อย่างไรก็ตามนิยามทั้ง 4 ไม่ได้ต่างกันโดยสมบูรณ์ นิยามทั้ง 4 ต่างก็มีส่วนร่วมที่คาบเกี่ยวกันอยู่
นิยามดังกล่าวคือ
-
ระบบที่คิดเหมือนมนุษย์ (Systems that think like humans)
- ปัญญาประดิษฐ์ คือ ความพยายามใหม่อันน่าตื่นเต้นที่จะทำให้คอมพิวเตอร์คิดได้ซึ่งเครื่องจักรที่มีสติปัญญาอย่างครบถ้วนและแท้จริง ("The exciting new effort to make computers think ... machines with minds, in the full and literal sense." [Haugeland, 1985])
- ปัญญาประดิษฐ์ คือ กลไกของกิจกรรมที่เกี่ยวข้องกับความคิดมนุษย์ เช่น การตัดสินใจ การแก้ปัญหา การเรียนรู้ ("[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning." [Bellman, 1978])
- หมายเหตุ ก่อนที่จะทำให้เครื่องคิดอย่างมนุษย์ได้ ต้องรู้ก่อนว่ามนุษย์มีกระบวนการคิดอย่างไร ซึ่งการวิเคราะห์ลักษณะการคิดของมนุษย์ เป็นศาสตร์ด้าน cognitive science เช่น ศึกษาการเรียงตัวของเซลล์สมองในสามมิติ ศึกษาการถ่ายเทประจุไฟฟ้า และวิเคราะห์การเปลี่ยนแปลงทางเคมีไฟฟ้าในร่างกาย ระหว่างการคิด ซึ่งจนถึงปัจจุบัน (พ.ศ. 2548) เราก็ยังไม่รู้แน่ชัดว่า มนุษย์เรา คิดได้อย่างไร
-
ระบบที่กระทำเหมือนมนุษย์ (Systems that act like humans)
- ปัญญาประดิษฐ์ คือ วิชาของการสร้างเครื่องจักรที่ทำงานในสิ่งซึ่งอาศัยปัญญาเมื่อกระทำโดยมนุษย์ ("The art of creating machines that perform functions that requires intelligence when performed by people." [Kurzweil, 1990])
- ปัญญาประดิษฐ์ คือ การศึกษาวิธีทำให้คอมพิวเตอร์กระทำในสิ่งที่มนุษย์ทำได้ดีกว่าในขณะนั้น ("The study of how to make computers do things at which, at the moment, people are better." [Rich and Knight, 1991])
-
หมายเหตุ การกระทำเหมือนมนุษย์ เช่น
- สื่อสารได้ด้วยภาษาที่มนุษย์ใช้ เช่น ภาษาไทย ภาษาอังกฤษ ตัวอย่างคือ การแปลงข้อความเป็นคำพูด และ การแปลงคำพูดเป็นข้อความ
- มีประสาทรับสัมผัสคล้ายมนุษย์ เช่น คอมพิวเตอร์รับภาพได้โดยอุปกรณ์รับสัมผัส แล้วนำภาพไปประมวลผล
- เคลื่อนไหวได้คล้ายมนุษย์ เช่น หุ่นยนต์ช่วยงานต่าง ๆ อย่างการ ดูดฝุ่น เคลื่อนย้ายสิ่งของ
- เรียนรู้ได้ โดยสามารถตรวจจับรูปแบบการเกิดของเหตุการณ์ใด ๆ แล้วปรับตัวสู่สิ่งแวดล้อมที่เปลี่ยนไปได้
-
ระบบที่คิดอย่างมีเหตุผล (Systems that think rationally)
- ปัญญาประดิษฐ์ คือ การศึกษาความสามารถในด้านสติปัญญาโดยการใช้โมเดลการคำนวณ ("The study of mental faculties through the use of computational model." [Charniak and McDermott, 1985])
- ปัญญาประดิษฐ์ คือ การศึกษาวิธีการคำนวณที่สามารถรับรู้ ใช้เหตุผล และกระทำ ("The study of the computations that make it possible to perceive, reason, and act" [Winston, 1992])
- หมายเหตุ คิดอย่างมีเหตุผล หรือคิดถูกต้อง เช่น ใช้หลักตรรกศาสตร์ในการคิดหาคำตอบอย่างมีเหตุผล เช่น ระบบผู้เชี่ยวชาญ
-
ระบบที่กระทำอย่างมีเหตุผล (Systems that act rationally)
- ปัญญาประดิษฐ์คือการศึกษาเพื่อออกแบบเอเจนต์ที่มีปัญญา ("Computational Intelligence is the study of the design of intelligent agents" [Poole et al., 1998])
- ปัญญาประดิษฐ์ เกี่ยวข้องกับพฤติกรรมที่แสดงปัญญาในสิ่งที่มนุษย์สร้างขึ้น ("AI ... is concerned with intelligent behavior in artifacts" [Nilsson, 1998])
- หมายเหตุ กระทำอย่างมีเหตุผล เช่น เอเจนต์ (โปรแกรมที่มีความสามารถในการกระทำ หรือเป็นตัวแทนในระบบอัตโนมัติต่าง ๆ ) สามารถกระทำอย่างมีเหตุผลเพื่อบรรลุเป้าหมายที่ได้ตั้งไว้ เช่น เอเจนต์ในระบบขับรถอัตโนมัติ ที่มีเป้าหมายว่าต้องไปถึงเป้าหมายในระยะทางที่สั้นที่สุด ต้องเลือกเส้นทางที่ไปยังเป้าหมายที่สั้นที่สุดที่เป็นไปได้ จึงจะเรียกได้ว่า เอเจนต์กระทำอย่างมีเหตุผล อีกตัวอย่างเช่น เอเจนต์ในเกมหมากรุก ที่มีเป้าหมายว่าต้องเอาชนะคู่ต่อสู้ ก็ต้องเลือกเดินหมากที่จะทำให้คู่ต่อสู้แพ้ให้ได้ เป็นต้น
งานวิจัย
เป้าหมาย
ปัญหาโดยทั่วไปของการจำลอง (หรือสร้าง) ปัญญาถูกแบ่งออกเป็นปัญหาย่อย ๆ จำนวนมาก นักวิจัยด้านปัญญาประดิษฐ์พยายามศึกษาระบบย่อย ๆ เหล่านี้ โดยที่ได้รับความสนใจมากเป็นพิเศษ ได้แก่
การนิรนาม การให้เหตุผล และการแก้ไขปัญหา (deduction, reasoning, problem solving)
งานวิจัยด้านปัญญาประดิษฐ์ในช่วงแรก ๆ นั้นเริ่มต้นมาจากการให้เหตุผลแบบทีละขั้น ๆ เป็นการให้เหตุผลแบบเดียวกับที่มนุษย์ใช้ในการไขปัญหาหรือหาข้อสรุปทางตรรกศาสตร์ เมื่อปลายคริสต์ทศวรรษ 1980 และ 1990 งานวิจัยด้านปัญญาประดิษฐ์ได้ถูกพัฒนาอย่างต่อเนื่อง และประสบความสำเร็จในการจัดการกับความไม่แน่นอนหรือความไม่สมบูรณ์ของข้อมูลได้ โดยใช้หลักการของความน่าจะเป็นและเศรษฐศาสตร์
ความยากของสาขานี้คือ อัลกอริทึมส่วนใหญ่ต้องใช้การคำนวณและประมวลผลมหาศาล มักจะเป็นการคำนวณแบบสลับสับเปลี่ยนจำนวนมาก และทำให้คอมพิวเตอร์ต้องใช้หน่วยความจำมหาศาลเมื่อต้องแก้ปัญหาที่มีขนาดใหญ่มาก ดังนั้น งานวิจัยในสายนี้จึงมักมุ่งเน้นการหาอัลกอริทึมที่มีประสิทธิภาพในการค้นหาอย่างมีประสิทธิภาพ
มนุษย์มีความสามารถในการไขปัญหาอย่างรวดเร็ว สามารถตัดสินใจได้ตามสัญชาติญาณและมีความรวดเร็วกว่าความรู้สึกตามสามัญสำนึกและการอนุมานแบบทีละขั้นแบบที่งานวิจัยด้านปัญญาประดิษฐ์ในช่วงแรกทำได้ ปัจจุบัน งานวิจัยด้านปัญญาประดิษฐ์เริ่มหันมาให้ความสนใจการแก้ไขปัญหาที่ย่อยไปกว่าเชิงสัญลักษณ์ หรือที่เรียกว่า sub-symbolic problem solving ไม่ว่าจะเป็น เอเยนต์ฝังตัว โครงข่ายประสาทเทียม หรือการใช้หลักการทางสถิติกับปัญญาประดิษฐ์ เพื่อเลียนแบบธรรมชาติของมนุษย์ในการเดาอย่างมีหลักการทางความน่าจะเป็น
เทคนิคที่นิยมใช้กันมากก็คือ การเขียนโปรแกรมเชิงตรรกะ (logic programming) เมื่อเราแทนความรู้ของเครื่องด้วย first-order logic และ bayesian inference เมื่อเราแทนความรู้ของเครื่องด้วย bayesian networks
การแทนความรู้
การแทนความรู้ (knowledge representation) เป็นหัวใจสำคัญของงานวิจัยด้านปัญญาประดิษฐ์ เป็นการศึกษาด้านเก็บความรู้ (knowledge) ไว้ในเครื่องจักร เราเชื่อกันว่าหากจะให้เครื่องจักรแก้ไขปัญหาให้จะต้องใช้ความรู้จำนวนมหาศาลบนโลกนี้ สิ่งที่ปัญญาประดิษฐ์ต้องการจะหาสัญลักษณ์มาแทนได้แก่ วัตถุ คุณสมบัติ ประเภท ความสัมพันธ์ระหว่างวัตถุ ไม่ว่าจะเป็นสถานการณ์ เหตุการณ์ สถานะ และเวลา ตลอดจนเหตุและผล ความรู้เกี่ยวกับความรู้ (รู้ว่าคนอื่นรู้อะไร) และอื่น ๆ อีกมากมาย การแทน"สิ่งที่มีอยู่"นั้นเรียกว่าสาขาภววิทยา เป็นการแทนที่กลุ่มของวัตถุ ความสัมพันธ์ แนวคิด และอื่น ๆ บนเครื่องจักร ประเด็นสำคัญของการแทนความรู้ คือ
- ทำอย่างไรจะแสดงความรู้ได้อย่างกะทัดรัด ประหยัดหน่วยความจำ
- จะนำความรู้ที่เก็บไว้นี้ไปใช้ในการให้เหตุผลอย่างไร
- จะมีการเรียนรู้ความรู้ใหม่ ๆ ด้วยเทคนิคการเรียนรู้ของเครื่อง ให้ความรู้ที่ได้อยู่ในรูปแบบความรู้ที่เราออกแบบไว้ได้อย่างไร
การแทนความรู้สามารถแบ่งออกได้เป็นสองประเภทหลัก คือ
- ความรู้ที่แน่นอน (certain knowledge) เช่น การแทนความรู้ด้วยตรรกศาสตร์ ไม่ว่าจะเป็น first-order logic หรือ propositional logic
- ความรู้ที่มีความไม่แน่นอนมาเกี่ยวข้อง (uncertain knowledge) เช่น ฟัซซี่ลอจิก (fuzzy logic) และเครือข่ายแบบเบย์ ( bayesian networks)
ระบบผู้เชี่ยวชาญ
ระบบผู้เชี่ยวชาญ (expert system) เป็นการศึกษาเรื่องสร้างระบบความรู้ของปัญหาเฉพาะอย่าง เช่น การแพทย์หรือวิทยาศาสตร์ จุดประสงค์ของระบบนี้คือ ทำให้เสมือนมีมนุษย์ผู้เชี่ยวชาญคอยให้คำปรึกษา และคำตอบเกี่ยวกับปัญหาต่าง ๆ งานวิจัยด้านนี้มีจุดประสงค์หลักว่า เราไม่ต้องพึ่งมนุษย์ในการแก้ปัญหา แต่อย่างไรก็ตามในทางปฏิบัติแล้ว ระบบผู้เชี่ยวชาญยังต้องพึ่งมนุษย์เพื่อให้ความรู้พื้นฐานในช่วงแรก การจะทำงานวิจัยเรื่องนี้ต้องอาศัยความรู้พื้นฐานหลายเรื่อง ไม่ว่าจะเป็น การแทนความรู้, การให้เหตุผล และ การเรียนรู้ของเครื่อง
การวางแผนของเครื่อง (automated planning)
เอเยนต์ฉลาดจะต้องมีความสามารถในการตั้งเป้าหมายและบรรลุเป้าหมายได้เอง จะต้องมีวิธีการนึกภาพของอนาคต (จะต้องสามารถมองเห็นสถานะต่าง ๆ บนโลกและสามารถคาดการณ์ได้ว่าโลกจะเปลี่ยนไปอย่างไรได้) และสามารถที่จะตัดสินใจเลือกทางเลือกที่มีประโยชน์ (หรือมีค่า) มากที่สุดได้
ในปัญหาการวางแผนแบบยุคเก่านั้น เอเยนต์จะมีข้อสมมติฐานว่าเอเยนต์เป็นวัตถุเดียวที่มีการกระทำบนโลก แต่อย่างไรก็ตาม หากเอเยนต์ไม่ได้เป็นเพียงวัตถุเดียวที่มีการกระทำ เอเยนต์จะต้องสืบให้แน่ใจอย่างซ้ำ ๆ ว่าโลกนั้นตรงกับตามที่คาดการณ์ไว้หรือไม่ และจะต้องเปลี่ยนแปลงแผนที่วางไว้อย่างไร ทำให้เอเยนต์ยุคใหม่นี้จะต้องจัดการกับความไม่แน่นอนด้วย
ปัจจุบัน ได้มีงานวิจัยสาขาการวางแผนของเอเยนต์หลายตัว ที่อาศัยความร่วมมือและการแข่งขันของเอเยนต์หลาย ๆ ตัวเพื่อให้บรรลุเป้าหมายที่กำหนดไว้ โดยใช้วิธีการที่มีประสิทธิภาพอย่างขั้นตอนวิธีเชิงวิวัฒนาการหรือความฉลาดแบบกลุ่ม
การเรียนรู้ของเครื่อง
การเรียนรู้ของเครื่อง (machine learning) เป็นการศึกษาอัลกอริทึมคอมพิวเตอร์ที่ขั้นตอนวิธีจะถูกปรับปรุงอย่างอัตโนมัติผ่านการเรียนรู้จากประสบการณ์ เป็นหัวใจหลักของงานวิจัยด้านปัญญาประดิษฐ์นับตั้งแต่มีการก่อตั้งสาขานี้มา
การเรียนรู้แบบไม่มีผู้สอน (unsupervised learning) เป็นความสามารถในการหาแบบแผนบางอย่างจากข้อมูลที่เข้ามา ส่วนการเรียนรู้แบบมีผู้สอน (supervised learning) นั้นหมายถึงการแบ่งประเภทข้อมูลและการวิเคราะห์การถดถอยเชิงตัวเลข ปัญหาการแบ่งประเภทของข้อมูลนั้นใช้เพื่อกำหนดว่าของชิ้นใหม่ชิ้นหนึ่งจัดอยู่ในกลุ่มประเภทใดหลังจากที่ได้เรียนรู้ตัวอย่างสอนที่ระบุว่าของแต่ละอย่างควรจะอยู่ในประเภทใดมาแล้ว ส่วนการวิเคราะห์การถดถอยนั้นพยายามจะสร้างฟังก์ชันทางคณิตศาสตร์ที่อธิบายความสัมพันธ์ระหว่างข้อมูลขาเข้ากับข้อมูลขาออก และทำนายว่าข้อมูลขาออกควรจะเปลี่ยนไปอย่างไรเมื่อข้อมูลขาเข้าเปลี่ยนแปลง ในการเรียนรู้แบบเสริมกำลัง (reinforcement learning) นั้น เอเยนต์จะได้รับรางวัลหากมีการตอบสนองที่ดีและถูกลงโทษหากมีการตอบสนองที่ไม่ดี เอเยนต์จะเรียนรู้จากรางวัลและการลงโทษนี้ในการสร้างกลยุทธ์เพื่อแก้ไขปัญหาต่าง ๆ การเรียนรู้ทั้งสามแบบนี้สามารถวิเคราะห์ได้ด้วยทฤษฎีการตัดสินใจ (decision theory) โดยใช้แนวคิดของประโยชน์ การวิเคราะห์ทางคณิตศาสตร์ของอัลกอริทึมทางการเรียนรู้ของเครื่องจักรและการวิเคราะห์ประสิทธิภาพของอัลกอริทึมนั้นเป็นอีกหนึ่งสาขาทางด้านวิทยาการคอมพิวเตอร์สายทฤษฎี การเรียนรู้ของเครื่องจักรถือว่าเป็นหัวใจสำคัญของการพัฒนาหุ่นยนต์เช่นกัน ทำให้หุ่นยนต์มีทักษะใหม่ ๆ ได้ ผ่านการสำรวจด้วยตนเอง การติดต่อกับผู้สอนที่เป็นมนุษย์ การเลียนแบบ และอื่น ๆ
การประมวลผลภาษาธรรมชาติ
การประมวลผลภาษาธรรมชาติ (natural language processing) คือการทำให้เครื่องมีความสามารถที่จะอ่านและเข้าใจภาษาที่มนุษย์พูดในชีวิตประจำวัน ระบบที่สามารถประมวลผลภาษาธรรมชาติได้มีประสิทธิภาพเพียงพอจะทำให้เรามีส่วนติดต่อกับผู้ใช้ที่ใช้ภาษาธรรมชาติ และหาความรู้ได้โดยตรงจากแหล่งข้อมูลที่มนุษย์เขียน เช่น หนังสือพิมพ์ นอกจากนี้ยังสามารถนำไปประยุกต์ใช้ได้โดยตรงกับการค้นข้อมูล (หรือการทำเหมืองข้อความ) การตอบคำถาม และการแปล
วิธีการโดยทั่วไปของการประมวลผลและดึงเอาความหมายมาจากธรรมชาติ คือ การทำดัชนีความหมาย นอกจากนี้ การเพิ่มความเร็วในการประมวลผลและลดขนาดของข้อมูลที่จะจัดเก็บก็ทำให้การค้นหาดัชนีจากฐานข้อมูลขนาดใหญ่มีประสิทธิภาพมากยิ่งขึ้น
การรับรู้ของเครื่อง
การรับรู้ของเครื่อง (machine perception) คือ ความสามารถในการอ่านข้อมูลขาเข้าจากเซนเซอร์ (เช่น กล้อง ไมโครโฟน เซนเซอร์สัมผัส โซนาร์ หรืออื่น ๆ ) เพื่อจะเข้าใจบริบทของโลกภายนอก ตัวอย่างของงานวิจัยด้านนี้ ได้แก่
- คอมพิวเตอร์วิทัศน์ (computer vision)
- การรู้จำคำพูด (speech recognition)
- การรู้จำใบหน้า (facial recognition)
- การรู้จำวัตถุ (object recognition)
การเคลื่อนไหวและการจัดการ (motion and manipulation)
สาขาวิทยาการหุ่นยนต์มีความคล้ายคลึงกับสาขาปัญญาประดิษฐ์ หุ่นยนต์ต้องการความฉลาดเพื่อจัดการกับสิ่งต่าง ๆ เช่น การจัดการวัตถุ ระบบนำทาง การแก้ปัญหาย่อยเช่นการหาที่อยู่ตัวเองหรือหาที่อยู่ของสิ่งอื่น ๆ การทำแผนที่ การวางแผนการเคลื่อนไหวหรือเส้นทาง
เป้าหมายระยะยาว
เป้าหมายระยะยาวของปัญญาประดิษฐ์ ได้แก่ ความฉลาดทางสังคม ความคิดสร้างสรรค์ และความฉลาดทั่วไป
ความฉลาดทางสังคม (social intelligence)
การคำนวณเชิงอารมณ์ (affective computing) คือ การศึกษาและพัฒนาระบบและเครื่องมือที่สามารถรู้จำ แปรผล ประมวลผล และจำลองอารมณ์ความรู้สึกของมนุษย์ได้ เป็นสหสาขาวิชาที่เกี่ยวข้องกับวิทยาการคอมพิวเตอร์ จิตวิทยา และประชานศาสตร์ สาขานี้เริ่มต้นจากความต้องการทางปรัชญาที่อยากจะเข้าถึงอารมณ์ของมนุษย์ สาขาการคำนวณเชิงอารมณ์สมัยใหม่นี้เริ่มจากคำนิยามของ โรซาไลนด์ พิการ์ด นักวิทยาศาสตร์คอมพิวเตอร์ที่ MIT ที่เริ่มใช้คำนี้ในผลงานวิจัยปี ค.ศ. 1995 เกี่ยวกับการคำนวณเชิงอารมณ์ แรงบันดาลใจของงานวิจัยสายนี้คือความต้องการที่จะจำลองความเข้าใจความรู้สึกของคนอื่นของมนุษย์ ต้องการมีเครื่องจักรที่สามารถแปลผลสถานะของอารมณ์ของมนุษย์และปรับเปลี่ยนพฤติกรรมให้ตอบสนองกับอารมณ์นั้น ๆ ของมนุษย์อย่างเหมาะสม
อารมณ์และทักษะทางสังคมมีบทบาทสำคัญต่อการพัฒนาความฉลาดของเครื่องจักร ก่อนอื่น เครื่องจักรจะต้องทำนายการกระทำของคนอื่น ผ่านทางการเข้าใจจุดมุ่งหมายและสถานะของอารมณ์ผู้อื่น (ส่วนนี้มีความเกี่ยวข้องกับทฤษฎีเกม ทฤษฎีการตัดสินใจ ตลอดจนความสามารถในการสร้างแบบจำลองอารมณ์ของมนุษย์ และความสามารถในการตรวจจับอารมณ์ผู้อื่นของมนุษย์) นอกจากนี้ ในการสร้างปฏิสัมพันธ์ระหว่างมนุษย์และคอมพิวเตอร์ที่ดีนั้น เครื่องจักรที่ฉลาดควรจะแสดงอารมณ์ออกมาด้วย แม้ว่าอารรมณ์นั้นจะไม่ได้เป็นอารมณ์ที่ตนรู้สึกจริง ๆ ก็ตาม
ความคิดสร้างสรรค์ (computational creativity)
สาขาย่อยของปัญญาประดิษฐ์สาขาหนึ่งต้องการจะสร้างความคิดสร้างสรรค์ ทั้งทางทฤษฎี (ในมุมมองทางปรัชญาและจิตวิทยา) และทางปฏิบัติ (ผ่านทางประยุกต์ใช้ระบบที่ให้ผลลัพธ์ที่ดูคล้ายความคิดสร้างสรรค์ หรือระบบที่สามารถตรวจจับและประเมินความคิดสร้างสรรค์ได้)
ความฉลาดทั่วไป (general intelligence)
นักวิจัยทางปัญญาประดิษฐ์หลายคนเชื่อว่า สุดท้ายแล้ว งานวิจัยต่าง ๆ จะถูกรวมเข้าสู่เครื่องจักรกลายเป็นความฉลาดแบบทั่วไป (บางครั้งก็เรียกว่า ปัญญาประดิษฐ์แบบแข็ง (String AI)) เป็นการรวมเอาทักษะต่าง ๆ เข้าด้วยกันและมีความสามารถมากกว่ามนุษย์ทุกคน นักวิจัยบางคนเชื่อว่าความฉลาดแบบนี้จะต้องมีคุณลักษณะทางมานุษยรูปนิยมบางอย่าง เช่น สำนึกประดิษฐ์ หรือ สมองประดิษฐ์
การวิจัยความฉลาดทั่วไปนั้นจะต้องแก้ปัญหาหลายอย่าง ตัวอย่างเช่น การแปลความหมายโดยเครื่องนั้นจะต้องให้เครื่องอ่านและเขียนข้อมูลภาษาธรรมชาติได้ทั้งสองภาษา ให้เหตุผล และรู้ว่ากำลังพูดถึงเรื่องอะไรกันอยู่ (การแทนความรู้) รวมทั้งจะต้องมีรู้ความตั้งใจของผู้เขียน (ความฉลาดทางสังคม) กล่าวคือ การแก้ปัญหาทางการวิจัยความฉลาดทั่วไปนั้น จะต้องแก้ปัญหาทางปัญญาประดิษฐ์หลาย ๆ อย่างไปพร้อม ๆ กัน
วิธีการ
ปัจจุบัน ยังไม่มีทฤษฎีหรือกระบวนทัศน์ใด ๆ ที่เป็นแนวทางที่ชัดเจนให้กับการวิจัยทางปัญญาประดิษฐ์ นักวิจัยบางคนก็ไม่เห็นด้วยกับบางเรื่อง ปัญหาที่ยังไม่มีคำตอบก็ยังมีอยู่มากมาย เช่น ปัญญาประดิษฐ์ควรจะมีพฤติกรรมคล้ายกับของจริงในธรรมชาติในทางจิตวิทยาหรือประสาทวิทยาหรือไม่ หรือ ชีววิทยาของร่างกายมนุษย์นั้นไม่ได้สัมพันธ์อะไรกับปัญญาประดิษฐ์แบบที่นกไม่ได้สัมพันธ์ใด ๆ กับอากาศยานหรือไม่ หรือ พฤติกรรมที่ฉลาดสามารถอธิบายได้ด้วยหลักการที่ง่าย ๆ ธรรมดา ๆ เช่นในทางตรรกะได้หรือไม่ หรือ เราจำเป็นหรือไม่ที่จะต้องแก้ปัญหาที่ไม่เกี่ยวข้องให้ครบ หรือ ความฉลาดสามารถถูกสร้างขึ้นมาโดยใช้สัญลักษณ์ขั้นสูงอย่างคำหรือแนวความคิดได้หรือไม่และจำเป็นจะต้องมีการประมวลผลสัญลักษณ์ที่ย่อยไปกว่านั้นหรือไม่
ไซเบอร์เนติกส์และการจำลองสมอง (cybernetics and brain simulation)
ในคริสต์ทศวรรษ 1940 และ 1950 นักวิทยาศาสตร์หลายคนพยายามจะหาความเชื่อมโยงระหว่างประสาทวิทยา ทฤษฎีสารสนเทศ และไซเบอร์เนติกส์ นักวิจัยบางคนได้สร้างเครือข่ายอิเล็กทรอนิกส์ขึ้นมาเพื่อสร้างความฉลาดขั้นต้นขึ้นมา ปัจจุบันวิธีการนี้ได้ถูกล้มเลิกไปแล้ว
สัญลักษณ์
หลังจากที่เริ่มมีความเป็นไปได้ที่จะสร้างเครื่องคอมพิวเตอร์ดิจิทัลขึ้นในราวคริสต์ทศวรรษ 1950 นักวิจัยทางปัญญาประดิษฐ์หลายคนก็เริ่มศึกษาดูความเป็นไปได้ที่จะลดรูปความฉลาดของมนุษย์ให้อยู่ในรูปสัญลักษณ์และการจัดการกับสัญลักษณ์ต่าง ๆ ศูนย์กลางของการวิจัยสาขานี้อยู่ที่มหาวิทยาลัยคาร์เนกีเมลลอน มหาวิทยาลัยสแตนฟอร์ด และสถาบันเทคโนโลยีแมสซาชูเซตส์ แต่ละมหาวิทยาลัยได้สร้างแนวทางการวิจัยเป็นของตัวเอง จอห์น ฮากแลนด์ตั้งชื่อหลักการเหล่านี้ว่า GOFAI (Good Old-Fashioned Artificial Intelligence) หรือปัญญาประดิษฐ์ในรูปแบบเก่า ต่อมาในช่วงคริสต์ทศวรรษ 1960 งานวิจัยโดยการแทนสัญลักษณ์นี้เริ่มประสบความสำเร็จในการจำลองความคิดชั้นสูงของมนุษย์ในบางโปรแกรม หลังจากที่วิธีการที่ใช้ไซเบอร์เนติกส์หรือโครงข่ายประสาทเทียมถูกล้มเลิกไป นักวิจัยในช่วงคริสต์ทศวรรษ 1960 และ 1970 หันมาใช้หลักการทางสัญลักษณ์เพราะเชื่อว่าวิธีการนี้จะประสบความสำเร็จในการสร้างปัญญาประดิษฐ์ทั่วไปที่เชื่อว่าเป็นเป้าหมายของงานวิจัยสาขานี้
- การจำลองการรับรู้ (cognitive simulation)
นักเศรษฐศาสตร์อย่างเฮอร์เบิร์ต ไซมอนและอัลเลน นิวเวลล์ได้ศึกษาทักษะการแก้ปัญหาของมนุษย์และพยายามทำให้มีระเบียบแบบแผน งานวิจัยของทั้งสองคนได้กลายมาเป็นจุดเริ่มต้นของสาขาของปัญญาประดิษฐ์ที่เรียกว่า วิทยาศาสตร์พุทธิปัญญา การวิจัยดำเนินการ และวิทยาการจัดการในเวลาต่อมา งานวิจัยสายนี้ใช้ผลจากการทดลองทางจิตวิทยาในการพัฒนาโปรแกรมที่สามารถจำลองเทคนิคที่คนใช้เพื่อแก้ปัญหาได้ วิธีการเหล่านี้มีจุดเริ่มต้นที่มหาวิทยาลัยคาร์เนกีเมลลอน
- วิธีการเชิงตรรกะ (logic-based)
จอห์น แม็กคาร์ธีย์ ใช้วิธีการที่แตกต่างไปจากวิธีของนิวเวลล์และไซมอน โดยรู้สึกว่าเครื่องจักรไม่จำเป็นต้องจำลองการคิดของมนุษย์ แต่ควรจะพยายามหาแก่นของการให้เหตุผลเชิงนามธรรมและการแก้ปัญหา ไม่ต้องสนใจว่าแต่ละคนจะใช้อัลกอรึทึมเดียวกันหรือไม่ ห้องปฏิบัติการวิจัยของเขาที่มหาวิทยาลัยสแตนฟอร์ดเน้นเรื่องของการใช้ตรรกะบัญญัติ (formal logic) ในการแก้ปัญหาต่าง ๆ ไม่ว่าจะเป็นการแทนความรู้ การวางแผน และการเรียนรู้ นอกจากนี้ มหาวิทยาลัยเอดินบะระและอีกหลายแห่งในยุโรปก็หันมาให้ความสนใจด้านการพัฒนาโปรแกรมเชิงตรรกะเช่นกัน ไม่ว่าจะเป็นภาษาโปรล็อกหรือการเขียนโปรแกรมเชิงตรรกะ
- วิธีการไม่ใช้ตรรกะ (anti-logic)
ในขณะเดียวกัน นักวิจัยที่สถาบันเทคโนโลยีแมสซาชูเซตส์ (เช่น มาร์วิน มินสกี และเซย์มัวร์ เพเพิร์ต) พบว่า การแก้ไขปัญหาบางอย่าง เช่น คอมพิวเตอร์วิทัศน์และการประมวลผลภาษาธรรมชาติจำเป็นต้องมีวิธีการที่ไม่จำเป็นต้องเตรียมล่วงหน้า นักวิจัยได้อ้างว่า ไม่มีหลักการที่ง่ายหรือหลักการทั่วไป (อย่างเช่นตรรกะ) ที่จะจับต้องพฤติกรรมความฉลาดของสิ่งมีชีวิตได้ โรเจอร์ แชงก์ ได้ตั้งชื่อว่า หลักการแอนตีลอจิก หรือหลักการ"ไม่เรียบร้อย" (เพื่อให้ตรงข้ามกับความมีระเบียบเรียบร้อยที่คาร์เนกีเมลลอนและสแตนฟอร์ด) ตัวอย่างของงานวิจัยสายนี้เช่น ฐานความรู้เกี่ยวกับสามัญสำนึก อันเป็นแนวคิดที่ค่อนข้างซับซ้อนในวงการปัญญาประดิษฐ์สมัยนั้น
- วิธีการเชิงความรู้ (knowledge-based)
เมื่อคอมพิวเตอร์เริ่มมีความจำที่ใหญ่ขึ้นตั้งแต่ออกสู่ตลาดเมื่อราวปี ค.ศ. 1970 นักวิจัยจากมหาวิทยาลัยเริ่มต้น 3 แห่งเริ่มหันมาสร้างความรู้สำหรับปัญญาประดิษฐ์ แนวคิดที่เปลี่ยนวงการนี้นำไปสู่การพัฒนาและการใช้ระบบผู้เชี่ยวชาญ และเป็นรูปแบบของซอฟต์แวร์ปัญญาประดิษฐ์แบบแรกที่ประสบความสำเร็จอย่างแท้จริง การปฏิวัติวงการดังกล่าวนี้ได้รับแรงขับเคลื่อนมาจากแนวคิดที่ว่า การนำปัญญาประดิษฐ์ไปประยุกต์ใช้นั้นจำเป็นจะต้องมีความรู้ในปริมาณมหาศาล
สัญลักษณ์ย่อย (sub-symbolic)
หลังจากวิธีการเชิงสัญลักษณ์ทางด้านปัญญาประดิษฐ์เริ่มหยุดชะงักในคริสต์ทศวรรษ 1980 นักวิจัยหลายคนก็เชื่อว่าระบบเชิงสัญลักษณ์ไม่น่าจะสามารถเลียนแบบกระบวนการที่เกี่ยวข้องกับสติปัญญาของมนุษย์ได้ โดยเฉพาะการรับรู้ วิทยาการหุ่นยนต์ การเรียนรู้ และการรู้จำแบบ นักวิจัยหลายคนได้เสนอหลักการของ"สัญลักษณ์ย่อย"กับปัญหาทางปัญญาประดิษฐ์บางปัญหา
- วิธีการจากล่างขึ้นบน (bottom-up)
นักวิจัยจากสาขาที่เกี่ยวข้องกับวิทยาการหุ่นยนต์ อาทิ รอดนีย์ บรูกส์ ปฏิเสธที่จะใช้ปัญญาประดิษฐ์เชิงสัญลักษณ์และหันมาใช้วิธีการทางวิศวกรรมที่จะทำให้หุ่นยนต์เคลื่อนไหวและอยู่รอดได้ งานวิจัยรูปแบบใหม่ในมุมมองแบบไม่อิงสัญลักษณ์นี้ทำให้งานวิจัยเชิงไซเบอร์เนติกส์ในยุค 1950 กลับมาอีกครั้ง และก่อให้เกิดการใช้ทฤษฎีควบคุมในสาขาปัญญาประดิษฐ์ขึ้น นอกจากนี้ ยังมีงานวิจัยพัฒนา"จิตใจฝังตัว"ในสาขาของ cognitive science ที่อ้างอิงแนวคิดที่ว่า ความฉลาดชั้นสูงนั้นล้วนเป็นส่วนประกอบมาจากร่างกายส่วนล่าง (เช่น การเคลื่อนไหว การรับรู้ และการมองเห็นภาพ) ทั้งนั้น
- ความฉลาดด้านการคำนวณ หรือการคำนวณแบบอ่อน (computational intelligence and soft computing)
กลางคริสต์ทศวรรษ 1980 เดวิด รูเมลฮาร์ต และนักวิจัยกลุ่มอื่นชุบชีวิตของสาขาโครงข่ายประสาทเทียมและศาสตร์การเชื่อมต่อขึ้นมาอีกครั้ง โครงข่ายประสาทเทียมถือเป็นตัวอย่างหนึ่งของการคำนวณแบบอ่อน อันเป็นวิธีการแก้ไขปัญหาที่แก้ไม่ได้ด้วยการใช้ความแน่นอนทางตรรกะ แต่สามารถแก้ได้โดยใช้การประมาณคำตอบที่แม่นยำเพียงพอ หลักการอื่น ๆ ของการคำนวณแบบอ่อน ได้แก่ ระบบคลุมเคลือ (fuzzy system) การคำนวณเชิงวิวัฒนาการ (evolutionary computation) และวิธีการอื่น ๆ ทางสถิติ
วิธีการทางสถิติ
ในคริสต์ทศวรรษ 1990 นักวิทยาศาสตร์ด้านปัญญาประดิษฐ์ได้พัฒนาเครื่องมือทางคณิตศาสตร์ที่มีประสิทธิภาพในการแก้ไขปัญหาย่อยบางอย่างได้ เครื่องมือเหล่านี้มีความเป็นวิทยาศาสตร์มากในแง่ที่ว่า ผลสามารถวัดและประเมินได้อย่างชัดเจน จนเป็นหัวใจสำคัญของปัญญาประดิษฐ์ในยุคหลังนี้ เนื่องจากวิธีการนี้ตั้งอยู่บนพื้นฐานของคณิตศาสตร์ จึงนำไปปรับใช้หรือพัฒนาร่วมกับหลักการในสาขาอื่น ๆ ได้ง่าย เช่น คณิตศาสตร์ เศรษฐศาสตร์ หรือการวิจัยดำเนินการ นักวิทยาศาสตร์ชื่อสจวร์ต รัสเซลล์และปีเตอร์ นอร์วิกอธิบายวิธีการนี้ไว้ว่าเป็น "การปฏิวัติ" และ "ความสำเร็จของความเป็นระเบียบ" อย่างไรก็ตาม ก็มีหลายคนที่ไม่เห็นด้วยกับเทคนิคเหล่านี้โดยชี้ว่า เทคนิคเหล่านี้มีความเฉพาะเจาะจงกับบางปัญหามากเกินไป และไม่สามารถบรรลุเป้าหมายระยะยาวในการสร้างความฉลาดทั่วไปได้ ปัจจุบันยังมีการถกเถียงกันอยู่เรื่องความเกี่ยวข้องและความถูกต้องของการใช้หลักการทางสถิติกับปัญญาประดิษฐ์ เช่น การถกเถียงกันระหว่างปีเตอร์ นอร์วิกกับโนม ชัมสกี
วิธีผสมผสาน
เอเยนต์ทรงปัญญา คือ ระบบที่สามารถรับรู้สิ่งแวดล้อมรอบข้างได้และเลือกปฏิบติตามวิธีที่มีโอกาสประสบความสำเร็จมากที่สุด เอเยนต์ทรงปัญญาในรูปแบบที่ง่ายที่สุดคือโปรแกรมที่สามารถแก้ไขปัญหาบางอย่างได้ ส่วนเอเยนต์ที่ซับซ้อนกว่านั้นก็ได้แก่มนุษย์และการรวมกลุ่มของมนุษย์ มุมมองนี้ทำให้นักวิจัยสามารถศึกษาปัญหาแบบแยกเฉพาะส่วนและหาคำตอบที่มีประโยชน์และถูกต้องได้โดยไม่ต้องมีเป้าหมายรวมกันเพียงเป้าหมายเดียว เอเยนต์จะต้องแก้ปัญหาเฉพาะอย่างปัญหาหนึ่งได้โดยการใช้วิธีการที่ได้ผล เอเยนต์บางเอเยนต์อาจจะใช้วิธีการทางสัญลักษณ์ หรือบางตัวอาจจะใช้วิธีการทางตรรกะ โครงข่ายประสาทเทียม หรือวิธีการอื่น ๆ แนวความคิดนี้ทำให้นักวิจัยสามารถสื่อสารกับสาขาอื่นได้ ไม่ว่าจะเป็นด้านเศรษฐศาสตร์หรือด้านทฤษฎีการตัดสินใจที่ใช้แนวคิดของเอเยนต์นามธรรมเช่นกัน แนวคิดเรื่องเอเยนต์ทรงปัญญานี้ได้รับการยอมรับเป็นวงกว้างนับตั้งแต่คริสต์ทศวรรษ 1990
นักวิจัยได้ออกแบบระบบเพื่อสร้างระบบฉลาดที่สามาาถติดต่อกับเอเยนต์ได้ผ่านทางระบบเอเยนต์หลายตัว ระบบดังกล่าวมีทั้งส่วนที่เป็นสัญลักษณ์และสัญลักษณ์ย่อย หรือเป็นระบบผสมผสาน (ไฮบริด) และการศึกษาระบบดังกล่าวนี้เรียกว่า การบูรณาการระบบปัญญาประดิษฐ์
เครื่องมือ
หลังจากปัญญาประดิษฐ์ได้มีการพัฒนาอย่างต่อเนื่องมากประมาณ 50 ปี ได้มีการพัฒนาเครื่องมือเพื่อใช้ในการแก้ไขปัญหาที่ยากในทางวิทยาการคอมพิวเตอร์ ตัวอย่างของวิธีการได้แก่
การค้นหาและการหาค่าที่เหมาะที่สุด (search and optimization)
ปัญหาทางปัญญาประดิษฐ์หลาย ๆ ปัญหาถูกแก้ในรูปแบบของทฤษฎีที่ว่าด้วยการค้นหาคำตอบจากคำตอบที่เป็นไปได้หลาย ๆ คำตอบ การให้เหตุผลสามารถเปลี่ยนรูปไปเป็นรูปแบบของการค้นหาได้ ตัวอย่างเช่น การพิสูจน์ทางตรรกะสามารถมองได้ว่าเป็นการค้นหาเส้นทางจากหลักฐานไปสู่ข้อสรุปได้ โดยผ่านขั้นตอนที่เรียกว่า การอนุมาน อัลกอริทึมทางวิทยาการหุ่นยนต์สำหรับการขยับข้อต่อและหยิบจับวัตถุก็ใช้วิธีการค้นหาสิ่งที่อยู่ภายในพื้นที่นั้น ๆ อัลกอริทึมทางด้านการเรียนรู้ของเครื่องหลาย ๆ อันก็ใช้วิธีการค้นหาบนคำตอบที่ดีที่สุด
อย่างไรก็ตาม การค้นหาแบบธรรมดานั้นไม่ค่อยจะเพียงพอสำหรับปัญหาในโลกจริง เพราะส่วนที่จะต้องค้นหานั้นมีขนาดใหญ่มหาศาล ทำให้การค้นหาเป็นไปได้ช้าหรือไม่สามารถทำให้เสร็จได้เลย หนึ่งในวิธีการแก้ปัญหาคือการใช้ค่าฮิวริสติกเพื่อตัดตัวเลือกที่ไม่น่าจะพาไปสู่เป้าหมายได้ (เรียกว่าวิธีการตัดกิ่งในต้นไม้ค้นหา) ค่าฮิวริสติกนี้ทำให้โปรแกรมสามารถเดาได้คร่าว ๆ ว่าเส้นทางไหนที่น่าจะพาไปสู่คำตอบ และช่วยทำให้ขนาดของตัวอย่างที่จะต้องค้นหาเล็กลงด้วย
การค้นหาเริ่มมีบทบาทเด่นชัดในคริสต์ทศวรรษ 1990 โดยใช้ทฤษฎีการหาค่าที่เหมาะสมที่สุดทางคณิตศาสตร์ ปัญหาหลาย ๆ อย่างก็สามารถเริ่มต้นการค้นหาได้ด้วยการเดาบางอย่าง จากนั้นก็ปรับวิธีการเดาไปเรื่อย ๆ จนกระทั่งไม่จำเป็นต้องปรับอีกแล้ว อัลกอริทึมเหล่านี้สามารถเรียกให้เห็นภาพได้ง่าย ๆ ว่าเป็นการปีนเขา โดยเริ่มจากการค้นหาที่จุดสุ่มในที่ราบ จากนั้นก็ค่อย ๆ กระโดดและไต่เขาขึ้นไปเรื่อย ๆ โดยใช้หลักการเดาว่าจุดไหนที่น่าจะทำให้เราปีนเขาขึ้นไป จนกระทั่งในที่สุดเราไปอยู่บนยอดสุดของภูเขา
การคำนวณเชิงวิวัฒนาการก็ใช้หลักการของการหาค้นหาค่าที่เหมาะที่สุดเช่นกัน ตัวอย่างเช่น เราอาจจะเริ่มต้นจากกลุ่มของสิ่งมีชีวิตกลุ่มหนึ่ง (สุ่มมา) จากนั้นก็ทำการวิวัฒนาการและผสมผสาน เลือกเอากลุ่มตัวอย่างที่ดีที่สุดเพื่ออยู่รอดต่อไปในรุ่น (การปรับการค้นหา) การคำนวณเชิงวิวัฒนาการมีหลายวิธี ได้แก่ ความฉลาดแบบกลุ่ม (swarm intelligence) หรือ ขั้นตอนวิธีเชิงวิวัฒนาการ (evolutionary algorithm) เช่น ขั้นตอนวิธีเชิงพันธุกรรม
ตรรกะ (logic)
ในการแทนความรู้และการแก้ปัญหานั้นมีการใช้ตรรกะอย่างมาก แต่ตรรกะก็สามารถประยุกต์ใช้ได้กับปัญญาอื่นได้เช่นกัน เช่น อัลกอริทึม Satplan ก็ใช้ตรรกะในการวางแผน และการเรียนรู้ของเครื่องบางวิธีก็ใช้การโปรแกรมตรรกะเชิงอุปนัย
วิธีทางความน่าจะเป็นและการให้เหตุผลบนความไม่แน่นอน (probabilistic methods for uncertain reasoning)
ปัญหาหลายอย่างทางปัญญาประดิษฐ์ (ในการให้เหตุผล วางแผน เรียนรู้ รับรู้ และหุ่นยนต์) ต้องมีเอเยนต์ที่คอยจัดการกับความไม่สมบูรณ์หรือความไม่แน่นอนของข้อมูล นักวิจัยด้านปัญญาประดิษฐ์ได้คิดค้นเครื่องมือหลายอย่างที่มีประสิทธิภาพเพื่อแก้ไขปัญหาเหล่านี้โดยใช้วิธีทางทฤษฎีความน่าจะเป็นและเศรษฐศาสตร์
เครือข่ายแบบเบย์ เป็นเครื่องมือทั่วไปเครื่องมือหนึ่งที่สามารถใช้แก้ปัญหาได้หลายปัญหา ไม่ว่าจะเป็น การให้เหตุผล (ใช้อัลกอริทึมการอนุมานแบบเบย์) การเรียนรู้ (ใช้อัลกอริทึมหาค่าคาดหวังที่มากที่สุด) การวางแผน (ใช้เครือข่ายการตัดสินใจ) และการรับรู้ (ใช้เครือข่ายแบบเบย์พลวัต) อัลกอริทึมทางความน่าจะเป็นก็สามารถใช้กับการกรอง การทำนาย การปรับให้ราบเรียบ และการหาคำอธิบายสายข้อมูล ช่วยระบบรับรู้ให้สามารถวิเคราะห์กระบวนการต่าง ๆ ที่เกิดขึ้นและเปลี่ยนแปลงตลอดเวลาได้ (เช่น แบบจำลองมาร์คอฟซ่อนเร้น หรือ ตัวกรองคาลมาน)
ในทางเศรษฐศาสตร์ แนวคิดหนึ่งที่ถือเป็นหัวใจหลักคือ ประโยชน์ สำหรับปัญญาประดิษฐ์ เราสามารถนำค่าของประโยชน์มาวัดได้ว่าของบางอย่างจะมีค่าต่อเอเยนต์ทรงปัญญาได้อย่างไร นักวิทยาศาสตร์ได้พัฒนาเครื่องมือคณิตศาสตร์ที่แม่นยำเพื่อวิเคราะห์ว่าเอเยนต์จะตัดสินใจและวางแผนได้อย่างไร โดยใช้วิธีของ Markov เครือข่ายการตัดสินใจแบบพลวัต ทฤษฎีเกม เป็นต้น
การจัดหมวดหมู่และการเรียนรู้ทางสถิติ (classifiers and statistical learning methods)
การประยุกต์ใช้ปัญญาประดิษฐ์ที่ง่ายที่สุด อาจอยู่ในรูปแบบของ การจัดหมวดหมู่ ซึ่งเป็นการทำงานที่ใช้การจับคู่รูปแบบที่พบเข้ากับสิ่งที่ใกล้เคียงที่สุด การจับคู่นั้นขึ้นอยู่กับตัวอย่างที่สอน จึงทำให้เป็นหัวข้อที่น่าสนใจมากในการประยุกต์ใช้ปัญญาประดิษฐ์ ตัวอย่างสอนเหล่านี้อาจจะมาจากการสังเกตการณ์หรือเป็นรูปแบบที่ชัดเจน ในการเรียนรู้แบบมีผู้สอนนั้น รูปแบบแต่ละอย่างจะถูกจัดกำหนดให้อยู่ในประเภทบางประเภทหรือกลุ่มบางกลุ่ม การสำรวจข้อมูลและการระบุข้อมูลให้เข้ากับกลุ่มนั้นเรียกกันว่า เซ็ตข้อมูล เมื่อมีการสำรวจข้อมูลใหม่เข้ามา ข้อมูลใหม่จะถูกจัดกลุ่มตามตัวอย่างที่เคยสอนมาแล้ว
การจัดหมวดหมู่หรือกลุ่มนี้สามารถสอนกันได้หลายแบบ ไม่ว่าจะใช้วิธีการทางสถิติหรือทางการเรียนรู้ของเครื่อง วิธีการที่นิยมใช้ได้แก่ โครงข่ายประสาทเทียม วิธีเคอร์เนล support vector machine ขั้นตอนวิธีการค้นหาเพื่อนบ้านใกล้สุด k ตัว โมเดลผสมแบบเกาส์ การจัดหมวดหมู่แบบเบย์ใหม่ และต้นไม้การตัดสินใจ ประสิทธิภาพของแต่ละเครื่องมือนั้นขึ้นอยู่กับงานที่ทำแต่ละงานและคุณสมบัติของข้อมูลที่เข้ามา โดยทั่วไปแล้ว ไม่มีเครื่องมือใดที่ทำหน้าที่ได้ดีที่สุดบนทุกปัญหา
โครงข่ายประสาทเทียม
การศึกษาโครงข่ายประสาทเทียม เริ่มต้นขึ้นตั้งแต่ก่อนที่จะมีงานวิจัยทางด้านปัญญาประดิษฐ์จากผลงานของวอลเตอร์ พิตต์สและวอร์เรน แม็กคัลลอช นอกจากนี้ยังมีแฟรงก์ โรเซนแบลตต์ที่คิดค้นเพอร์เซปตรอน และพอล เวอร์โบส์ผู้คิดค้นอัลกอริทึมการแพร่กระจายย้อนกลับ
ประเภทของโครงข่ายนี้อาจะแบ่งเป็นแบบไม่เป็นวงวน และแบบเป็นวงวน โครงข่ายประสาทเทียมที่ได้รับความนิยมได้แก่เพอร์เซปตรอน โครงข่ายเพอร์เซปตรอนแบบหลายชั้น และโครงข่ายฟังก์ชันฐานรัศมี โครงข่ายประสาทเทียมสามารถปรับใช้งานได้กับการควบคุมที่ฉลาดเช่นกับหุ่นยนต์ หรือเพื่อการเรียนรู้ของเครื่องด้วยก็ได้เช่นกัน
นอกจากนี้ หากโครงข่ายประสาทเทียมมีความทรงจำเชิงเวลาแล้วก็สามารถจำสร้างแบบจำลองเชิงโครงสร้างและวิธีการของนีโอคอร์เทกซ์ของสมองได้ ซึ่งเป็นแนวคิดที่เป็นที่มาของสาขาการเรียนรู้เชิงลึกที่ได้รับความนิยมมากตั้งแต่กลางศตวรรษที่ 20 เป็นต้นมาจากผลงานของเจฟฟรีย์ ฮินตันและรูสลาน ซาลาคัตดินอฟ
ทฤษฎีควบคุม (control theory)
ทฤษฎีควบคุม เป็นลูกหลานของไซเบอร์เนติกส์ สามารถนำไปประยุกต์ใช้งานได้หลากหลาย โดยเฉพาะในทางวิทยาการหุ่นยนต์
ภาษา (languages)
นักวิจัยทางปัญญาประดิษฐ์ได้พัฒนาภาษาพิเศษสำหรับงานวิจัย เช่น ภาษาลิสป์ และภาษาโปรล็อก
สาขาที่เกี่ยวข้องกับปัญญาประดิษฐ์
สาขาที่มีบทบาทมากในปัจจุบัน
วิทยาการหุ่นยนต์
- การจะสร้างหุ่นยนต์ที่อาศัยอยู่กับมนุษย์ได้จริง ต้องใช้ความรู้ทางปัญญาประดิษฐ์ทั้งหมด นอกจากนั้นยังต้องใช้ความรู้อื่น ๆ ทางเครื่องกล เพื่อสร้างสรีระให้หุ่นยนต์สามารถเคลื่อนไหวได้เช่นเดียวกับมนุษย์
- ในวงการวิทยการหุ่นยนต์ เขาก็ถือว่าปัญญาประดิษฐ์เป็นสาขาของเขาเช่นกัน
ขั้นตอนวิธีเชิงพันธุกรรม
- เป็นการประยุกต์นำแนวความคิดทางด้านการวิวัฒนาการที่มีอยู่ในธรรมชาติ มาใช้ในการแก้ปัญหาทางคณิตศาสตร์และคอมพิวเตอร์
- เป็นขั้นตอนวิธีเชิงสุ่ม (stochastic) (ไม่ได้คำตอบเดิมทุกครั้งที่แก้ปัญหาเดิม)
- มักประยุกต์ใช้ในปัญหาการหาค่าที่เหมาะสมที่สุด (optimization) ที่ไม่สามารถแก้ได้ด้วยวิธีมาตรฐานทางคณิตศาสตร์อย่างมีประสิทธิภาพ
- แนวคิดที่นำเอาหลักการวิวัฒนาการมาใช้นี้ มีรูปแบบอื่นอีกหลายรูปแบบ เช่น การโปรแกรมเชิงพันธุกรรม (genetic programming) และ evolution strategy อย่างไรก็ตามเทคนิคเหล่านี้มีแนวความคิดหลักเหมือนกัน ต่างกันในรายละเอียดปลีกย่อยเท่านั้น
โครงข่ายประสาทเทียม
ชีวิตประดิษฐ์ (artificial life)
- เป็นการศึกษาพฤติกรรมของชีวิตเทียมที่เราออกแบบและสร้างขึ้น
ปัญญาประดิษฐ์แบบกระจาย (distributed artificial intelligence)
สาขาอื่นที่ยังไม่มีบทบาทมากนัก
ความฉลาดแบบกลุ่ม
Artificial being
ดูเพิ่ม
- รศ. ดร. บุญเสริม กิจศิริกุล (2003) "ปัญญาประดิษฐ์ เอกสารคำสอนวิชา 2110654", http://www.cp.eng.chula.ac.th/~boonserm/teaching/artificial.htm .
- รศ. ดร. ประภาส จงสถิตย์วัฒนา เอกสารการสอนเกี่ยวกับ โปรแกรมเชิงพันธุกรรม , ขั้นตอนวิธีเชิงพันธุกรรม และเอกสารอื่น ๆ ที่เกี่ยวข้อง, http://www.cp.eng.chula.ac.th/~piak/ .
หนังสือเรียน AI
-
Hutter, Marcus (2005). Universal Artificial Intelligence. Berlin: Springer. ISBN 978-3-540-22139-5.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Jackson, Philip (1985). Introduction to Artificial Intelligence (2nd ed.). Dover. ISBN 978-0-486-24864-6.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Luger, George; Stubblefield, William (2004). Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.). Benjamin/Cummings. ISBN 978-0-8053-4780-7.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Neapolitan, Richard; Jiang, Xia (2018). Artificial Intelligence: With an Introduction to Machine Learning. Chapman & Hall/CRC. ISBN 978-1-138-50238-3.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Nilsson, Nils (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann. ISBN 978-1-55860-467-4.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Russell, Stuart J.; Norvig, Peter (2003). Artificial Intelligence: A Modern Approach (2nd ed.). Upper Saddle River, New Jersey: Prentice Hall. ISBN 0-13-790395-2.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Russell, Stuart J.; Norvig, Peter (2009). Artificial Intelligence: A Modern Approach (3rd ed.). Upper Saddle River, New Jersey: Prentice Hall. ISBN 978-0-13-604259-4.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Poole, David; Mackworth, Alan; Goebel, Randy (1998). Computational Intelligence: A Logical Approach. New York: Oxford University Press. ISBN 978-0-19-510270-3.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Winston, Patrick Henry (1984). Artificial Intelligence. Reading, MA: Addison-Wesley. ISBN 978-0-201-08259-3.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Rich, Elaine (1983). Artificial Intelligence. McGraw-Hill. ISBN 978-0-07-052261-9.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Bundy, Alan (1980). Artificial Intelligence: An Introductory Course (2nd ed.). Edinburgh University Press. ISBN 978-0-85224-410-4.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Poole, David; Mackworth, Alan (2017). Artificial Intelligence: Foundations of Computational Agents (2nd ed.). Cambridge University Press. ISBN 978-1-107-19539-4.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help)
ประวัติของ AI
-
Crevier, Daniel (1993). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
McCorduck, Pamela (2004). Machines Who Think (2nd ed.). Natick, MA: A. K. Peters, Ltd. ISBN 1-56881-205-1. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2020-03-01. สืบค้นเมื่อ 2020-06-09.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Newquist, HP (1994). The Brain Makers: Genius, Ego, And Greed In The Quest For Machines That Think. New York: Macmillan/SAMS. ISBN 978-0-672-30412-5.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help) -
Nilsson, Nils (2009). The Quest for Artificial Intelligence: A History of Ideas and Achievements. New York: Cambridge University Press. ISBN 978-0-521-12293-1.
{{cite book}}
:|ref=harv
ไม่ถูกต้อง (help)
แหล่งข้อมูลอื่น
ทั่วไป
- AI web category on Open Directory เก็บถาวร 2008-05-27 ที่ เวย์แบ็กแมชชีน
- Programming:AI เก็บถาวร 2004-05-17 ที่ เวย์แบ็กแมชชีน @ Wikibooks.org
- University of Berkeley AI Resources linking to about 869 other WWW pages about AI เป็นแหล่งที่รวบรวมข้อมูลทาง internet เกี่ยวกับ AI ไว้มากที่สุดแหล่งหนึ่ง
- Loebner Prize website เก็บถาวร 2010-12-30 ที่ เวย์แบ็กแมชชีน
- AIWiki - a wiki devoted to AI.
- AIAWiki - AI algorithms and research.
- Mindpixel "The Planet's Largest Artificial Intelligence Effort"
- OpenMind CommonSense เก็บถาวร 2006-02-08 ที่ เวย์แบ็กแมชชีน "Teaching computers the stuff we all know"
- Artificially Intelligent Ouija Board เก็บถาวร 2005-05-19 ที่ เวย์แบ็กแมชชีน - creative example of human-like AI
- Heuristics and AI in finance and investment เก็บถาวร 2001-12-02 ที่ เวย์แบ็กแมชชีน
- SourceForge Open Source AI projects เก็บถาวร 2008-12-19 ที่ เวย์แบ็กแมชชีน - 1139 projects
- Ethical and Social Implications of AI en Computerization
- AI algorithm implementations and demonstrations
- Marvin Minsky's Homepage
- Why Programming is a Good Medium for Expressing Poorly Understood and Sloppily Formulated Ideas
กลุ่มวิจัย
- German Research Center for Artificial Intelligence หรือ DFKI
- AI Lab, Zurich เก็บถาวร 2005-06-04 ที่ เวย์แบ็กแมชชีน
- Computer Science and Artificial Intelligence Laboratory, MIT
- Department of Informatics, University of Sussex
- School of Informatics, the University of Edinburgh - มหาวิทยาลัยเอดินบะระ
- Knowledge Representation Laboratory เก็บถาวร 2005-04-04 ที่ เวย์แบ็กแมชชีน - สถาบันเทคโนโลยีแห่งเอเชีย
- Intelligent Systems Laboratory (ISL) เก็บถาวร 2005-04-05 ที่ เวย์แบ็กแมชชีน - จุฬาลงกรณ์มหาวิทยาลัย
- Knowledge Information & Data Management Laboratory (KIND) เก็บถาวร 2006-06-10 ที่ เวย์แบ็กแมชชีน - ห้องวิจัยการจัดการข้อมูล, สารสนเทศ, และความรู้ สถาบันเทคโนโลยีนานาชาติสิรินธร (SIIT) มหาวิทยาลัยธรรมศาสตร์
- Image and Vision Computing Laboratory เก็บถาวร 2005-11-08 ที่ เวย์แบ็กแมชชีน ห้องวิจัยการคำนวณภาพและวิทัศน์ สถาบันเทคโนโลยีนานาชาติสิรินธร มหาวิทยาลัยธรรมศาสตร์
- ปิยณัฐ ประถมวงศ์. “การเป็นผู้กระทำร่วม: เมื่อมนุษย์อยู่ร่วมกับปัญญาประดิษฐ์.” ใน ชาญณรงค์ บุญหนุน, คงกฤช ไตรยวงค์ และพัชชล ดุรงค์กวิน (บก.), เอกสารประกอบการประชุมวิชาการระดับชาติ เวทีวิจัยมนุษยศาสตร์ไทย ครั้งที่ 12 ‘อยู่ด้วยกัน’: โลก เทคโนโลยี ความเหลื่อมล้ำ และความเป็นอื่น. หน้า 114-133. ม.ป.ท., 2561.
หน่วยงานและองค์กรที่เกี่ยวข้องกับปัญญาประดิษฐ์
- American Association for Artificial Intelligence
- European Coordinating Committee for Artificial Intelligence
- The Association for Computational Linguistics เก็บถาวร 2005-09-23 ที่ เวย์แบ็กแมชชีน
- Artificial Intelligence Student Union เก็บถาวร 2005-07-28 ที่ เวย์แบ็กแมชชีน
- Association for Uncertainty in Artificial Intelligence
- Singularity Institute for Artificial Intelligence เก็บถาวร 2005-09-16 ที่ เวย์แบ็กแมชชีน
- The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (United Kingdom)