Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
วิวัฒนาการของคอเคลีย
คำว่า คอเคลีย มาจากคำภาษาละตินที่แปลว่า "หอยโข่ง/หอยทาก, เปลือก, หรือเกลียว" ซึ่งก็มาจากคำกรีก คือ kohlias ส่วนคำปัจจุบันที่หมายถึง หูชั้นในรูปหอยโข่ง พึ่งเริ่มใช้ตั้งแต่คริสต์ศตวรรษที่ 17 คอเคลียของสัตว์เลี้ยงลูกด้วยนมจะมีอวัยวะของคอร์ติ ซึ่งมีเซลล์ขนที่แปลแรงสั่นที่วิ่งไปในน้ำที่ล้อมรอบ ให้เป็นกระแสไฟฟ้าที่ส่งไปยังสมองเพื่อประมวลเสียง ส่วนอวัยวะที่มีรูปเป็นหอยโข่งประมาณว่าเกิดในต้นยุคครีเทเชียสราว ๆ 120 ล้านปีก่อน นอกจากนั้นแล้ว เส้นประสาทที่วิ่งไปยังคอเคลียก็เกิดในยุคครีเทเชียสเหมือนกันวิวัฒนาการของคอเคลียในมนุษย์เป็นเรื่องสำคัญทางวิทยาศาสตร์เพราะว่าดำรงเป็นหลักฐานได้ดีในซากดึกดำบรรพ์ ในศตวรรษที่ผ่านมา ทั้งนักวิทยาศาสตร์ นักชีววิทยาเชิงวิวัฒนาการ และนักบรรพชีวินวิทยา ได้พยายามพัฒนาเทคนิคใหม่ ๆ เพื่อข้ามอุปสรรคในการทำงานกับวัตถุโบราณที่บอบบาง ในอดีต นักวิทยาศาสตร์จำกัดมากในการตรวจดูตัวอย่างโดยไม่ทำให้เสียหาย แต่ในปัจจุบัน เทคโนโลยีต่าง ๆ เช่น การถ่ายภาพรังสีส่วนตัดอาศัยคอมพิวเตอร์ระดับไมโคร (micro-CT scanning) ช่วยให้สามารถแยกแยะซากดึกดำบรรพ์ของสัตว์จากซากตกตะกอนอื่น ๆ และเทคโนโลยีรังสีเอกซ์ ก็ช่วยให้ตรวจสมรรถภาพการได้ยินของสัตว์ที่สูญพันธุ์ไปแล้วได้ และช่วยสร้างความรู้ใหม่ ๆ เกี่ยวกับทั้งบรรพบุรุษมนุษย์และสัตว์อื่น ๆ ที่อยู่ในช่วงเวลาเดียวกัน
กายวิภาคเปรียบเทียบ
แม้ว่าโครงสร้างพื้นฐานของหูชั้นในสำหรับ lepidosaurs (กิ้งก่าและงู) archosaurs (สัตว์ปีกและจระเข้) และสัตว์เลี้ยงลูกด้วยนม จะคล้ายกัน และพิจารณาว่ามีกำเนิดเดียวกัน (homologous) แต่ว่าสัตว์แต่ละพวกก็ยังมีอวัยวะรับเสียงที่พิเศษต่างกัน
อวัยวะการได้ยินเริ่มที่ท่อ lagena ของสัตว์เลื้อยคลานที่เป็นบรรพบุรุษร่วม (stem) โดยอยู่ระหว่าง saccular epithelia และ lagenar epithelia ในกิ้งก่าและงู อวัยวะรับเสียงซึ่งก็คือ basilar papilla โดยทั่วไปจะเล็ก มีเซลล์ขนอย่างมาก 2,000 เซลล์ เทียบกับสัตว์ปีกและจระเข้ที่ basilar papilla จะยาวกว่า (ของนกเค้าโมงจะยาวกว่า 10 มม.) และมีเซลล์ขนมากกว่าโดยมีขนาดสุด ๆ สองอย่าง ที่เรียกว่า เซลล์ขนสั้น (short hair cell) และเซลล์ขนยาว (long hair cell)
ส่วนในสัตว์เลี้ยงลูกด้วยนม ส่วนที่เรียกว่า อวัยวะของคอร์ติ จะมีเซลล์ขนและเซลล์ค้ำจุนที่จัดเป็นรูปแบบโดยเฉพาะ ในสัตว์เลี้ยงลูกด้วยนมทั้งหมด อวัยวะของคอร์ติจะมีช่องที่ประกอบด้วย pillar cell ซึ่งด้านในจะมีเซลล์ขนด้านใน (IHC) และด้านนอกจะมีเซลล์ขนด้านนอก (OHC) หูชั้นกลางที่เป็นลักษณะเฉพาะของสัตว์เลี้ยงลูกด้วยนมและคอเคลียที่ยาวขึ้น จะช่วยให้ไวเสียงความถี่สูงยิ่งขึ้น
กิ้งก่าและงู
เหมือนกิ้งก่ากับงูและสัตว์ปีกกับจระเข้ทั้งหมด หูชั้นกลางที่มีกระดูกหูชิ้นเดียวคือ columella จะส่งเสียงผ่านด้านปลายของกระดูกเป็นคลื่นความดันเข้าไปในหูชั้นใน ในงู basilar papilla จะยาวประมาณ 1 มม. และตอบสนองต่อเสียงความถี่ต่ำกว่า 1 กิโลเฮิรตซ์ เปรียบเทียบกับกิ้งก่า ซึ่งมักจะมีเซลล์ขนแบ่งเป็น 2 เขต เขตหนึ่งตอบสนองต่อเสียงความถี่ต่ำกว่า 1 กิโลเฮิรตซ์ และอีกเขตหนึ่งตอบสนองต่อเสียงความถี่สูงกว่านั้น ขีดความถี่เสียงสูงสุดของกิ้งก่าโดยมากอยู่ที่ประมาณ 5-8 กิโลเฮิรตซ์ basilar papilla ยาวที่สุดของกิ้งก่าอยู่ที่ประมาณ 2 มม. โดยมีเซลล์ขน 2,000 เซลล์ และเส้นประสาทนำเข้า ๆ ของมันจะส่งสัญญาณเป็นความถี่โดยเฉพาะ ๆ
สัตว์ปีกและจระเข้
ในสัตว์ปีกและจระเข้ ความใกล้เคียงกันของโครงสร้าง basilar papilla แสดงให้เห็นว่ามีสายเลือดที่ใกล้เคียงกันมากทางวิวัฒนาการ basilar papilla อาจยาวถึง 10 มม. และมีเซลล์ขนถึง 16,500 เซลล์ ในขณะที่สัตว์ปีกโดยมากจะได้ยินเสียงสูงอย่างมากที่ 6 กิโลเฮิรตซ์ แต่นกแสกสามารถได้ยินเสียงสูงถึง 12 กิโลเฮิรตซ์ใกล้ ๆ กับมนุษย์
สัตว์เลี้ยงลูกด้วยนม
สัตว์เลี้ยงลูกด้วยนมที่วางไข่ คือ โมโนทรีม (อิคิดนาและตุ่นปากเป็ด) ไม่มีคอเคลียที่ขดเป็นก้นหอย แต่มีรูปคล้ายลูกกล้วยยาวประมาณ 7 มม. เหมือนกิ้งก่ากับงูและสัตว์ปีกกับจระเข้ อวัยวะจะมี lagena และเยื่อบุผิวที่เป็นอวัยวะรับรู้การทรงตัว (vestibular sensory epithelium) ที่ปลาย เฉพาะสัตว์เลี้ยงลูกด้วยนมชั้นเธอเรีย (คือ สัตว์มีกระเป๋าหน้าท้องและสัตว์มีรก) ที่มีคอเคลียขดเป็นก้นหอย 1.5-3.5 รอบ เทียบกับโมโนทรีม ที่มีแถวของเซลล์ขนด้านใน (IHC) และ เซลล์ขนด้านนอก (OHC) หลายแถวในอวัยวะของคอร์ติ ในเธอเรีย IHC จะมีแค่ 1 แถว และทั่วไปจะมี OHC 3 แถว
สัตว์สะเทินน้ำสะเทินบก
สัตว์สะเทินน้ำสะเทินบกมีโครงสร้างหูชั้นในที่พิเศษ คือมี papillae 2 ปุ่มที่ใช้ในการได้ยิน คือ แบบ basilar ใช้ในการได้ยินเสียงสูง และแบบ amphibian ใช้ในการได้ยินเสียงต่ำ แต่ไม่ชัดเจนว่า ทั้งสองมีต้นกำเนิดเดียวกับอวัยวะการได้ยินของกิ้งก่ากับงู สัตว์ปีกกับจระเข้ และสัตว์เลี้ยงลูกด้วยนมหรือไม่ แม้แต่ช่วงเวลากำเนิดของอวัยวะนี้ก็ไม่ชัดเจน
ปลา
ปลาไม่มีเนื้อเยื่อบุผิวเพื่อได้ยินเป็นพิเศษ แต่มีอวัยวะแบบ vestibular sensory หลายอย่างที่ตอบสนองต่อเสียง ในปลา infraclass "Teleostei" เป็นอวัยวะส่วน Macula of saccule ที่ตอบสนองต่อเสียง ในปลาบางชนิด เช่น ปลาทอง ยังมีกระดูกพิเศษที่เชื่อมกับกระเพาะลมเพื่อเพิ่มความไวทำให้สามารถได้ยินจนถึง 4 กิโลเฮิรตซ์
นีแอนเดอร์ทาลและมนุษย์ปัจจุบัน
ขนาดคอเคลียได้วัดตามการวิวัฒนาการด้วยหลักฐานซากดึกดำบรรพ์ งานศึกษาหนึ่งวัดการขดของก้นหอย แล้วสันนิษฐานว่า ขนาดคอเคลียเป็นไปตามมวลร่างกาย คือขนาดของคอเคลียของมนุษย์นีแอนเดอร์ทาลไม่ได้ต่างจากของมนุษย์สมัยโฮโลซีน แต่ว่าขยายใหญ่ขึ้นในมนุษย์ปัจจุบันยุคต้น ๆ และมนุษย์ยุคหินปลาย (Upper Paleolithic) นอกจากนั้นแล้ว ตำแหน่งและทิศทางของคอเคลียยังคล้ายกันระหว่างนีแอนเดอร์ทาลและมนุษย์สมัยโฮโลซีน โดยเทียบกับแนวระนาบของช่องหู ไม่เหมือนกับมนุษย์ปัจจุบันและมนุษย์ยุคหินปลาย ที่คอเคลียอยู่สูงกว่า เมื่อเทียบมนุษย์สมัยไพลสโตซีนกลาง กับนีแอนเดอร์ทาลและมนุษย์สมัยโฮโลซีน ปลายคอเคลีย (apex) ของมนุษย์สมัยไพลสโตซีนจะชี้ลงต่ำลงกว่ามนุษย์ 2 พวกหลัง นอกจากนั้นแล้ว คอเคลียของมนุษย์ยุโรปกลางสมัยไพลสโตซีนยังหันหน้าลงต่ำกว่านีแอนเดอร์ทาล มนุษย์ปัจจุบัน และ Homo erectus อีกด้วย
มนุษย์กับเอป เป็นสัตว์เลี้ยงลูกด้วยนมกลุ่มเดียวที่ไม่สามารถได้ยินเสียงสูงกว่า 32 กิโลเฮิรตซ์ แม้ว่าคอเคลียของมนุษย์จะยาว แต่ว่า พื้นที่ที่ให้กับความถี่แต่ละพิสัยค่อนข้างใหญ่ (คือ 2.5 มม. ต่ออ็อกเทฟ) มีผลทำให้ไม่ได้ยินเสียงสูง คอเคลียของมนุษย์ม้วนประมาณ 2.5 รอบรอบ ๆ แกน (modiolus) มนุษย์เหมือนกับสัตว์เลี้ยงลูกด้วยนมและสัตว์ปีกอื่น ๆ ที่สามารถได้ยินเสียงที่ขยับแก้วหูเพียงแค่พิโคเมตรเดียว
หู
เพราะว่าความเด่นและภาวะที่เก็บไว้ได้ดีในซากดึกดำบรรพ์ นักวิชาการได้ใช้หูเพื่อกำหนดวิวัฒนาการชาติพันธุ์ (phylogeny) จนถึงกระทั่งเร็ว ๆ นี้ หูมักจะมีส่วนต่าง ๆ รวมทั้งหูชั้นนอก หูชั้นกลาง และหูชั้นใน ซึ่งล้วนแต่แสดงความเปลี่ยนแปลงตามวิวัฒนาการที่มักจะเฉพาะต่อสัตว์แต่ละพวก ๆ วิวัฒนาการของหูชั้นกลางที่เริ่มต้นด้วยแก้วหูในยุคไทรแอสซิก เป็นตัวจุดชนวนให้เกิดอวัยวะการได้ยินที่ดีขึ้นโดยการคัดเลือกโดยธรรมชาติในสัตว์ชาติพันธุ์ต่าง ๆ
มุมมองทางวิวัฒนาการ
คอเคลียเป็นอวัยวะมี 3 ช่องที่เป็นตัวตรวจจับเสียงในหู รวมทั้งช่อง scala media, scala tympani, และ scala vestibuli ในสัตว์เลี้ยงลูกด้วนนม ทั้งสัตว์มีกระเป๋าหน้าท้องและสัตว์มีรก ตอบสนองต่อเสียงและมีศักย์ไฟฟ้าระดับพักคล้าย ๆ กัน ซึ่งเป็นเหตุจุดชนวนการตรวจสอบความสัมพันธ์ระหว่างสัตว์ชั้นเธอเรียเหล่านี้ ว่ามีบรรพบุรุษร่วมกันอย่างไรเพื่อหาจุดกำเนิดของคอเคลีย คอเคลียรูปก้นหอยมีต้นกำเนิดประมาณ 120 ล้านปีก่อน
การพัฒนา basilar papilla พื้นฐานที่สุด (คือ อวัยวะการได้ยินที่ภายหลังวิวัฒนาการเป็นอวัยวะของคอร์ติในสัตว์เลี้ยงลูกด้วยนม) เกิดขึ้นพร้อมกับที่สัตว์มีกระดูกสันหลังย้ายจากน้ำขึ้นมาอยู่บนบก คือประมาณ 380 ล้านปีก่อน การม้วนตัวของคอเคลียเกิดขึ้นเพื่อประหยัดพื้นที่ในกะโหลกศีรษะ คือยิ่งคอเคลียยาวเท่าไร ก็มีโอกาสรับรู้เสียงละเอียดยิ่งขึ้นถ้าพิสัยการได้ยินเท่ากัน
คอเคลียที่ม้วนอย่างสมบูรณ์แรกของสัตว์เลี้ยงลูกด้วยนมยาวประมาณ 4 มม. หลักฐานที่เก่าแก่ที่สุดของไพรเมตแสดงคอเคลียสั้นที่มี laminae ใหญ่ ซึ่งบอกได้ว่า ไวเสียงสูงดี แต่ไม่ไวเสียงต่ำ หลังจากนี้ 60 ล้านปีต่อมา หลักฐานบอกว่า ไพรเมตวิวัฒนาการมีคอเคลียที่ยาวขึ้นและ lamina ที่เล็กลง ซึ่งหมายความว่า ไวเสียงต่ำมากขึ้น และไวเสียงสูงลดลง โดยต้นสมัยไมโอซีน วงจรวิวัฒนาการที่ทำให้คอเคลียยาวขึ้นและ laminae สั้นลงก็ได้ยุติลง
หลักฐานยังแสดงด้วยว่า อัตราปริมาตรของคอเคลียต่อมวลร่างกายของไพรเมตเพิ่มขึ้นตามกาลเวลา การเพิ่มปริมาตรของห้องหูชั้นในมีผลลบต่อการได้ยินเสียงความถี่สูงสุดและต่ำสุด คือทำให้ได้ยินเสียงสูงต่ำได้น้อยลง สัตว์เลี้ยงลูกด้วยนมอื่นดูเหมือนจะมีอัตราปริมาตรของคอเคลียที่เล็กว่าเมื่อเทียบกับไพรเมต มีหลักฐานบ้างว่า ความกดดันในการคัดเลือกให้มีห้องหูชั้นในที่ใหญ่ขึ้น เริ่มขึ้นที่บรรพบุรุษต้นตระกูลของไพรเมต
สัตว์เลี้ยงลูกด้วยนมเป็นที่สนใจของนักวิชาการอย่างยิ่งไม่ใช่เพียงแค่เพราะความรู้เกี่ยวกับมนุษย์ที่จะได้ แต่เพราะมีซากดึกดำบรรพ์อยู่มากมากด้วย ส่วนการขดเป็นก้นหอยของเคลียวิวัฒนาการขึ้นช้ากว่าที่เคยคิด คือ ทันทีก่อนที่สัตว์กลุ่มเธอเรียจะแยกออกเป็นสัตว์มีกระเป๋าหน้าท้องและสัตว์มีรกที่ประมาณ 120 ล้านปีก่อน
วิวัฒนาการของ prestins
โดยขนานกับวิวัฒนาการของคอเคลีย prestins ก็ได้พัฒนาขึ้นในสัตว์เลี้ยงลูกด้วยนมชั้นเธอเรียไปพร้อม ๆ กัน Prestins อยู่ในเซลล์ขนด้านนอก (OHC) ของคลอเคลียและพิจารณาว่าเป็นโปรตีนประเภทมอร์เตอร์ (คือเคลื่อนไหวได้) แม้ว่าจะพบในเซลล์ขนของสัตว์มีกระดูกสันหลังทั้งหมดรวมทั้งปลา แต่เชื่อว่า ในยุคแรก ๆ เป็นโมเลกุลที่ใช้ขนส่งสารข้ามเยื่อหุ้มเซลล์ (membrane transporter)
เยื่อหุ้มด้านข้าง (lateral) ของ OHC ในเธอเรีย เป็นส่วนเดียวที่มี prestins อยู่อย่างหนาแน่น (แต่ยังไม่ชัดเจนว่าโมโนทรีมมีมากขนาดไหน) โดยไม่พบที่เซลล์ขนด้านใน (IHC) และไม่มีในเซลล์ขนของสัตว์อื่น ๆ ที่ไม่ใช่สัตว์เลี้ยงลูกด้วยนม แม้ว่า Prestin จะมีบทบาทในการเคลื่อนไหวเอง (motility) ซึ่งต่อมากลายเป็นบทบาทสำคัญในสัตว์เลี้ยงลูกด้วยนมบนบก แต่บทบาทเช่นนี้ก็วิวัฒนาการขึ้นอย่างแตกต่างกันมากในสัตว์กลุ่มต่าง ๆ กัน เช่น ในสัตว์ปีกและสัตว์เลี้ยงลูกด้วยนมบางชนิด prestins ทำหน้าที่ทั้งขนส่งสารและทำให้ไหวได้ แต่วิวัฒนาการเพื่อให้เคลื่อนไหวได้ดีที่สุดพบแต่ในสัตว์เลี้ยงลูกด้วยนมชั้นเธอเรียเท่านั้น สันนิษฐานว่า ระบบมอร์เตอร์เช่นนี้สำคัญเพื่อให้คอเคลียของเธอเรียสามารถตอบสนองต่อเสียงความถี่สูง เพราะว่า องค์ประกอบทั้งทางเซลล์และทางกระดูกของอวัยวะของคอร์ติ ทำให้ prestins สามารถเพิ่มการไหวของโครงสร้างทั้งหมดได้
สปีชีส์ที่สามารถหาตำแหน่งของวัตถุโดยใช้เสียงสะท้อนของคลื่นเสียงความถี่สูงได้ เช่น ค้างคาวและวาฬมีฟัน มีวิวัฒนาการที่ก้าวล้ำของ prestin โดยมีลำดับความเปลี่ยนแปลงที่คล้ายกันตามกาลเวลา แต่ที่แปลกก็คือ เป็นวิวัฒนาการที่เกิดแยกเป็นอิสระและเกิดในสมัยต่าง ๆ กัน นอกจากนั้นแล้ว วิวัฒนาการของระบบสื่อประสาททั้งสารสื่อประสาท (คือ acetylcholine) และตัวรับ ที่ควบคุมการเคลื่อนไหวแบบป้อนกลับของ OHC ก็ยังวิวัฒนาการขึ้นพร้อมกับ prestin ในสัตว์กลุ่มเธอเรียอีกด้วย ซึ่งแสดงว่า มีวิวัฒนาการขนานกันระหว่างระบบควบคุม (control) กับระบบการเคลื่อนไหว (motor) ในหูชั้นในของสัตว์เลี้ยงลูกด้วยนมชั้นเธอเรีย
วิวัฒนาการเบนเข้า (convergent evolution)
สัตว์มีกระดูกสันหลังบนบกวิวัฒนาการหูชั้นกลางอย่างเป็นอิสระจากกันและกันในสัตว์แต่ละพวก คือเป็นวิวัฒนาการแบบขนานกัน ดังนั้น รูปแบบของหูชั้นกลางในโมโนทรีมและสัตว์เลี้ยงลูกด้วยนมชั้นเธอเรียที่คล้ายกัน จึงจัดเป็นวิวัฒนาการเบนเข้า (convergent evolution) หรือที่เรียกอีกอย่างหนึ่งว่า homoplasy หลักฐานซากดึกดำบรรพ์แสดงการแยกส่วนของหูออกจากกระดูกขากรรไกร ว่าเป็นวิวัฒนาการแบบเบนเข้า นอกจากนั้นแล้ว ยังชัดเจนอีกด้วยว่า แก้วหูที่พบในสัตว์บก และโครงสร้างที่เชื่อมต่อกัน เช่น ท่อยูสเตเชียน ยังเป็นวิวัฒนาการเบนเข้าในสัตว์แต่ละพวก ๆ ไม่ใช่เพราะมีบรรพบุรุษร่วมกัน