Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

การถ่ายโอนสัญญาณ

Подписчиков: 0, рейтинг: 0
วิถีการถ่ายโอนสัญญาณหลัก ๆ (แบบทำให้ง่าย) ในสัตว์เลี้ยงลูกด้วยนม

ในเซลล์ การถ่ายโอนสัญญาณ หรือ การแปรสัญญาณ (อังกฤษ: signal transduction) เป็นกระบวนการทางเคมีหรือทางกายภาพโดยเป็นลำดับการทำงาน/ลำดับเหตุการณ์ในระดับโมเลกุล ที่โมเลกุลส่งสัญญาณ (ปกติฮอร์โมนหรือสารสื่อประสาท) จะเริ่มการทำงาน/ก่อสภาพกัมมันต์ของหน่วยรับ ซึ่งในที่สุดมีผลให้เซลล์ตอบสนองหรือเปลี่ยนการทำงาน โปรตีนที่ตรวจจับสิ่งเร้าโดยทั่วไปจะเรียกว่า หน่วยรับ (receptor) แม้ในบางที่ก็จะใช้คำว่า sensor ด้วย ความเปลี่ยนแปลงที่เกิดจากการจับของลิแกนด์กับหน่วยรับ (คือการพบสัญญาณ) จะก่อลำดับการส่งสัญญาณ (signaling cascade) ซึ่งเป็นลำดับเหตุการณ์ทางเคมีชีวภาพตามวิถีการส่งสัญญาณ (signaling pathway) เมื่อวิถีการส่งสัญญาณมากกว่าหนึ่งมีปฏิสัมพันธ์กับกันและกัน นี่ก็จะกลายเป็นเครือข่าย เป็นการประสานการตอบสนองของเซลล์ บ่อยครั้งโดยเป็นการส่งสัญญาณแบบร่วมกัน ในระดับโมเลกุล การตอบสนองเช่นนี้รวม

เหตุการณ์ระดับโมเลกุลเหล่านี้เป็นกลไกพื้นฐานในการควบคุมการเติบโตของเซลล์ การเพิ่มจำนวนเซลล์ เมแทบอลิซึมของเซลล์ และกระบวนการอื่น ๆ อีกมากมาย ในสิ่งมีชีวิตหลายเซลล์ วิถีการโอนสัญญาณได้วิวัฒนาการขึ้นเพื่อควบคุมการสื่อสารระหว่างเซลล์โดยวิธีการต่าง ๆ

องค์ประกอบแต่ละอย่าง (ซึ่งอาจเรียกว่าโหนด [node]) ในวิถีการส่งสัญญาณจะจัดหมู่ตามบทบาทเนื่องกับสิ่งเร้าเบื้องต้น ลิแกนด์จะเรียกว่า โมเลกุลส่งสัญญาณที่หนึ่ง (first messengers) ในขณะที่หน่วยรับจะเรียกว่า ตัวแปรสัญญาณ (signal transducer) ซึ่งจะก่อสภาพกัมมันต์ของ หน่วยปฏิบัติงานปฐมภูมิ (primary effectors) หน่วยปฏิบัติงานเช่นนี้บ่อยครั้งสัมพันธ์กับ โมเลกุลส่งสัญญาณที่สอง ซึ่งสามารถก่อสภาพกัมมันต์ของ หน่วยปฏิบัติงานทุติยภูมิ เป็นต้น ขึ้นอยู่กับประสิทธิภาพของโหนด สัญญาณสามารถขยายได้ ดังนั้น โมเลกุลส่งสัญญาณตัวเดียว สามารถก่อการตอบสนองเป็นโมเลกุลเป็นร้อย ๆ ถึงเป็นล้าน ๆ ตัว

เหมือนกับสัญญาณในรูปแบบอื่น ๆ การถ่ายโอนสัญญาณทางชีวภาพก็จะประกอบด้วยการหน่วงเวลา (delay), เสียงรบกวน (noise), สัญญาณป้อนกลับ (signal feedback), signal feedforward, สัญญาณแทรกสอด (interference) ซึ่งมีพิสัยตั้งแต่เล็กน้อยจนถึงขั้นก่อโรค ตั้งแต่เริ่มสาขาชีววิทยาเชิงคอมพิวเตอร์ (computational biology) การวิเคราะห์วิถีการส่งสัญญาณและเครือข่ายการส่งสัญญาณ ได้กลายเป็นอุปกรณ์สำคัญเพื่อเข้าใจการทำงานของเซลล์และของโรค เช่น เพื่อเข้าใจกลไกการเปลี่ยนระบบสัญญาณซึ่งเป็นการตอบสนองเมื่อเกิดการดื้อยา

สิ่งเร้า

ดูบทความหลักที่: ตัวกระตุ้น

มูลฐานของการถ่ายโอนสัญญาณก็คือ การแปลสิ่งเร้าโดยเฉพาะอย่างหนึ่งให้เป็นสัญญาณทางเคมีชีวภาพ รูปแบบของสิ่งเร้าที่ว่าจะต่างกันอย่างหลากหลาย เริ่มตั้งแต่สิ่งเร้านอกเซลล์ เช่น epidermal growth factor (EGF) จนถึงเหตุการณ์ภายในเซลล์เอง เช่น ความเสียหายต่อดีเอ็นเอเพราะ telomere ที่สั้นลงเนื่องจากการแบ่งเซลล์

ตามธรรมดาแล้ว สัญญาณคือกระแสประสาทที่ส่งไปยังระบบประสาทกลาง จะมาจากประสาทสัมผัส ซึ่งส่งจากเซลล์ประสาทหนึ่งไปยังอีกเซลล์ประสาทหนึ่ง เป็นกระบวนการที่เรียกว่า การสื่อประสาท (synaptic transmission/neurotransmission) แต่ก็มีกลไกการส่งสัญญาณอื่น ๆ ระหว่างเซลล์ในสัตว์หลายเซลล์ เช่น ที่ควบคุมพัฒนาการเมื่อยังเป็นตัวอ่อน

ลิแกนด์

ดูบทความหลักที่: ลิแกนด์

วิถีการถ่ายโอนสัญญาณโดยมากจะมีการจับกันของโมเลกุลส่งสัญญาณ ที่เรียกว่า ลิแกนด์ กับหน่วยรับ แล้วจุดชนวนเหตุการณ์ต่าง ๆ ภายในเซลล์ คือการจับกันของลิแกนด์กับหน่วยรับ จะทำให้หน่วยรับเปลี่ยนโครงรูป (conformational change) เป็นการเริ่มการทำงาน/การก่อสภาพกัมมันต์ของหน่วยรับ (receptor activation) ให้เป็นสภาพที่ออกฤทธิ์ได้ ลิแกนด์โดยมากจะเป็นโมเลกุลละลายได้ในสื่อนอกเซลล์ โมเลกุลรวมทั้ง growth factors, cytokines, และสารสื่อประสาท

องค์ประกอบของเมทริกซ์นอกเซลล์ เช่น fibronectin และ hyaluronan ก็สามารถจับกับหน่วยรับด้วย (คือกับ integrins และ CD44 ตามลำดับ) อนึ่ง โมเลกุลบางอย่างเช่น ฮอร์โมนแบบสเตอรอยด์ จะละลายในลิพิดได้ และดังนั้น จึงสามารถผ่านเยื่อหุ้มเซลล์เพื่อเข้าไปถึงหน่วยรับที่นิวเคลียส (nuclear receptors) ในกรณีของหน่วยรับฮอร์โมนสเตอรอยด์ การกระตุ้นหน่วยรับจะทำให้มันจับกับบริเวณ promoter ของยีนที่ตอบสนองต่อสเตอรอยด์

การจัดหมู่โมเลกุลส่งสัญญาณไม่ใช่ว่า จะเป็นไปตามธรรมชาติอย่างใดอย่างหนึ่งโดยเฉพาะเท่านั้นของสมาชิกในหมู่ ยกตัวอย่างเช่น โมเลกุลมีกลิ่น (odorant) จัดอยู่ในหมวดหมู่ต่าง ๆ มากมาย สารสื่อประสาทก็เหมือนกัน ซึ่งเริ่มตั้งแต่โมเลกุลเล็ก ๆ เช่น โดพามีน ไปจนถึง neuropeptide เช่น เอ็นดอร์ฟิน นอกจากนั้น โมเลกุลบางอย่างอาจอยู่ในหมู่มากกว่าหนึ่ง เช่น เอพิเนฟรีนเป็นทั้งสารสื่อประสาทเมื่อหลั่งออกโดยระบบประสาทกลาง และเป็นฮอร์โมนเมื่อหลั่งออกโดยต่อมหมวกไตส่วนใน (adrenal medulla)

หน่วยรับบางอย่างเช่น HER2 สามารถทำงานโดยไร้ลิแกนด์เมื่อแสดงออกมากเกินไปหรือกลายพันธุ์ เป็นการก่อสภาพกัมมันต์ของวิถีส่งสัญญาณเอง โดยกลไกชดเชยอาจไม่สามารถระงับได้ ในกรณีของ HER2 ซึ่งเป็นคู่ขาในไดเมอร์ร่วมกับ EGFR สภาพกัมมันต์เช่นนี้ทำให้เพิ่มจำนวนเซลล์มากเกินแล้วเกิดมะเร็ง

แรงกล

ข้อมูลเพิ่มเติม: ตัวรับแรงกล

ความแพร่หลายของเยื่อฐาน (basement membrane) ในเนื้อเยื่อของสัตว์เคลด Eumetazoa เป็นตัวบ่งว่า เซลล์โดยมากจะต้องยึดอยู่กับที่เพื่อให้รอดชีวิตได้ ข้อบังคับนี้ทำให้วิวัฒนาการเกิดวิถีการถ่ายโอนแรงกล (mechanotransduction pathway) ที่ซับซ้อน ซึ่งทำให้เซลล์รู้ความแข็งอ่อนของชั้นเนื้อเยื่อที่อยู่ข้างใต้ได้ การส่งสัญญาณเช่นนี้จะพบที่ focal adhesion ซึ่งเป็นบริเวณที่ actin cytoskeleton อันยึดอยู่กับ integrin ตรวจจับความเปลี่ยนแปลงแล้วส่งสัญญาณต่อโดยผ่านโปรตีน YAP1 โมเลกุลยึดเซลล์ (cell adhesion molecules) ที่อาศัยแคลเซียม เช่น cadherin และ selectin ก็สามารถอำนวยการถ่ายโอนแรงกลด้วย การถ่ายโอนแรงกลแบบพิเศษภายในระบบประสาททำให้สามารถรับรู้แรงกลได้ เช่น การได้ยิน สัมผัส การรับรู้อากัปกิริยา และการกำหนดรู้การทรงตัว

ความดันออสโมซิส

การควบคุมความดันออสโมซิส (osmotic pressure) คือความแตกต่างทางออสโมลาริตีระหว่างไซโตซอลกับสื่อนอกเซลล์ ทั้งในระดับเซลล์และทั้งระบบ เป็นเรื่องสำคัญอย่างวิกฤติในเรื่องภาวะธำรงดุล เซลล์สามารถตรวจจับสิ่งเร้าแบบออสโมซิสด้วยความเปลี่ยนแปลงของ macromolecular crowding ด้วยความต่างศักย์ไฟฟ้าของไอออน และด้วยคุณสมบัติของเยื่อหุ้มเซลล์หรือของ cytoskeleton โดยอย่างหลังสุดนี้เป็นการถ่ายโอนแรงกลอย่างหนึ่ง

ความเปลี่ยนแปลงเหล่านี้สามารถตรวจจับด้วยโปรตีนที่เรียกว่า osmosensor หรือ osmoreceptor ในมนุษย์ osmosensor ที่ได้ศึกษาละเอียดที่สุดก็คือ transient receptor potential channel (TRP channel) ซึ่งอยู่ที่ซีเลียอันเคลื่อนที่ไม่ได้ (nonmotile cillia) ในเซลล์มนุษย์ ส่วนในยีสต์ มีการศึกษาวิถี HOG อย่างละเอียดที่สุด

อุณหภูมิ

ข้อมูลเพิ่มเติม: ปลายประสาทรับร้อน

การรับอุณหภูมิในเซลล์เรียกว่า thermoception และโดยมากอำนวยโดยช่อง transient receptor potential channel (TRP channel) อนึ่ง เซลล์ของสัตว์มีกลไกสงวนที่ไม่ได้เปลี่ยนตามวิวัฒนาการ เพื่อป้องกันอุณหภูมิสูงไม่ให้สร้างความเสียหายในเซลล์ เรียกว่า การตอบสนองต่อช็อกความร้อน (heat-shock response) การตอบสนองเช่นนี้จะจุดชนวนเมื่ออุณหภูมิสูงทำให้โปรตีนช็อกความร้อน Heat shock factor 1 (HSF1) ที่เบื้องต้นไม่มีฤทธิ์แตกตัวจากคอมเพล็กซ์คือ Hsp40/Hsp70 และ Hsp90 เมื่อได้อำนวยการจาก Non-coding RNA คือ hsr1 โปรตีน HSF1 ก็จะรวมเป็นไทรเมอร์ที่มีฤทธิ์ แล้วเพิ่ม (upregulation) การแสดงออกของยีนเป้าหมาย ยังมีกลไกรับรู้อุณหภูมิอื่น ๆ อีกมากในทั้งโพรแคริโอตและยูแคริโอต

แสง

ในสัตว์เลี้ยงลูกด้วยนม แสงเป็นตัวกำหนดการเห็นและนาฬิกาจังหวะรอบวัน (circadian clock) โดยเริ่มการทำงานของโปรตีนไวแสงในเซลล์รับแสงที่จอตา ในกรณีการเห็น rhodopsin ในเซลล์รูปแท่งและเซลล์รูปกรวย จะเป็นโปรตีนที่ตรวจจับแสง ส่วนนาฬิกาจังหวะรอบวันจะใช้สารรงควัตถุไวแสงที่ต่างกัน คือ melanopsin ซึ่งมีหน้าที่ตรวจจับแสงภายใน intrinsically photosensitive retinal ganglion cells

หน่วยรับ

หน่วยรับสามารถแบ่งออกเป็นสองกลุ่มใหญ่ ๆ คือ หน่วยรับภายในเซลล์และนอกเซลล์

หน่วยรับนอกเซลล์

หน่วยรับนอกเซลล์เป็นโปรตีนผ่านเยื่อหุ้มเซลล์ (transmembrane protein) ซึ่งเป็นหน่วยรับกลุ่มใหญ่ที่สุด เป็นโปรตีนที่ทอดข้ามเยื่อหุ้มเซลล์ คือส่วนหนึ่งจะอยู่นอกเซลล์และอีกส่วนหนึ่งจะอยู่ในเซลล์ การถ่ายโอนสัญญาณจะเกิดอาศัยลิแกนด์ที่จับกับส่วนนอกของหน่วยรับ โดยที่ลิแกนด์จะไม่เข้าผ่านเยื่อหุ้มเซลล์ การจับจะทำให้ส่วนภายในเปลี่ยนโครงรูป เป็นกระบวนการที่บางครั้งเรียกว่าการก่อกัมมันต์ของหน่วยรับ (receptor activation) ซึ่งมีผลเริ่มก่อกัมมันต์ของโดเมนที่เป็นเอนไซม์ของหน่วยรับ หรือเป็นการเปิดจุดยึด (binding site) สำหรับโปรตีนส่งสัญญาณภายในเซลล์ ซึ่งในที่สุดก็จะแพร่กระจายสัญญาณไปในไซโทพลาซึม

ในเซลล์ยูแคริโอต โปรตีนภายในเซลล์โดยมากที่เปลี่ยนเป็นสภาพกัมมันต์เพราะการจับของลิแกนด์-หน่วยรับ จะมีฤทธิ์เป็นเอนไซม์ด้วย ตัวอย่างรวมทั้ง tyrosine kinase และ phosphatase เอนไซม์เช่นนี้บ่อยครั้งจะเชื่อมอยู่กับหน่วยรับด้วยพันธะโคเวเลนต์ บางอย่างสามารถสร้างโมเลกุลส่งสัญญาณที่สอง เช่น cyclic AMP และ Inositol triphosphate (IP3) โดยอย่างหลังเป็นตัวกระตุ้นให้หน่วยเก็บภายในปล่อยแคลเซียมออกในไซโทพลาซึม ส่วนโปรตีนกัมมันต์อื่น ๆ จะมีปฏิกิริยากับโปรตีนอะแด็ปเตอร์ (signal transducing adaptor protein) ที่อำนวยปฏิสัมพันธ์ระหว่างโปรตีนส่งสัญญาณต่าง ๆ และประสานงานให้คอมเพล็กซ์ส่งสัญญาณต่าง ๆ ที่จำเป็นในการตอบสนองต่อสิ่งเร้าหนึ่ง ๆ ทั้งเอนไซม์และโปรตีนอะแด็ปเตอร์เป็นตัวตอบสนองต่อโมเลกุลส่งสัญญาณที่สองต่าง ๆ

โปรตีนอะแด็ปเตอร์และเอนไซม์หลายอย่างที่ออกฤทธิ์โดยเป็นส่วนของการถ่ายโอนสัญญาณ จะมีโดนเมนโปรตีนพิเศษ (protein domain) เพื่อจับกับโมเลกุลส่งสัญญาณที่สองโดยเฉพาะ ๆ ยกตัวอย่างเช่น ไอออนแคลเซียม (Ca2+) ซึ่งเป็นโมเลกุลส่งสัญญาณที่สองจะจับกับโดเมน EF hand ของโปรตีน calmodulin ซึ่งทำให้มันสามารถจับและเริ่มการทำงานของ calmodulin-dependent kinase ส่วน PIP3 และ phosphoinositides อื่น ๆ ก็จะทำเช่นเดียวกันต่อโดเมน Pleckstrin homology domain ของโปรตีนเช่น AKT ซึ่งเป็น kinase protein

G protein-coupled receptors

ดูบทความหลักที่: G protein-coupled receptor

G protein-coupled receptors (GPCRs) เป็นกลุ่มโปรตีนข้ามเยื่อหุ้มเซลล์ที่มีโดเมนผ่านเยื่อหุ้มเซลล์ 7 โดเมน โดยส่วนภายในเชื่อมอยู่กับจีโปรตีนที่เป็น heteromer กลุ่มมีสมาชิกเกือบ 800 ชนิด จึงเป็นโปรตีน/หน่วยรับของเยื่อหุ้มเซลล์กลุ่มใหญ่ที่สุดในสัตว์เลี้ยงลูกด้วยนม ถ้านับสัตว์สปีชีส์อื่น ๆ ด้วยทั้งหมด ก็จะมีเกิน 5,000 ชนิด

GPCR ของสัตว์เลี้ยงลูกด้วยนมแบ่งออกเป็น 5 หมู่หลัก คือ rhodopsin-like, secretin-like, metabotropic glutamate, adhesion และ frizzled/smoothened แม้จะมีโปรตีนบางพวกที่จัดยากเพราะมีลำดับดีเอ็นเอที่เหมือนกันน้อย เช่น vomeronasal receptor (ที่ vomeronasal organ) ยังมีหมู่อื่น ๆ อีกในยูแคริโอต เช่น cyclic AMP receptor และ fungal mating pheromone receptor ของโพรทิสต์สกุล Dictyostelium

การโอนสัญญาณของ GPCR เริ่มจากการมีจีโปรตีนในสภาพอกัมมันต์ที่เชื่อมอยู่กับหน่วยรับภายในเซลล์ โดยจีโปรตีนจะเป็น heterotrimer คือมีหน่วยย่อยต่าง ๆ รวมทั้ง Gα, Gβ, และ Gγ เมื่อ GPCR จับกับลิแกนด์ มันจะเปลี่ยนโครงรูปซึ่งก่อสภาพกัมมันต์ของจีโปรตีนอันเป็นเหตุให้หน่วยย่อย Gα จับกับโมเลกุลของ GTP แล้วแตกออกจากหน่วยย่อยอื่น ๆ 2 อย่างที่เหลือ การแตกตัวจะเปิดจุดยึดของหน่วยย่อยที่สามารถมีปฏิสัมพันธ์กับโมเลกุลอื่น ๆ

หน่วยย่อยกัมมันต์ของจีโปรตีนที่แยกออกจากหน่วยรับเช่นนี้ จะจุดชนวนการส่งสัญญาณในลำดับต่อ ๆ ไปของโปรตีนปฏิบัติงาน (effector protein) มากมาย เช่น phospholipase และช่องไอออน โดยอย่างหลังจะอำนวยให้ปล่อยโมเลกุลส่งสัญญาณที่สองได้ กำลังของ GPCR ในการขยายสัญญาณจะกำหนดโดยช่วงอายุของคอมเพล็กซ์ลิแกนด์-หน่วยรับ ของหน่วยรับ-คอมเพล็กซ์โปรตีนปฏิบัติงาน และเวลาที่เอนไซม์ในกระบวนการใช้เพื่อระงับฤทธิ์ของหน่วยรับกัมมันต์และโปรตีนปฏิบัติงาน เช่น ผ่าน protein kinase phosphorylation หรือ b-arrestin-dependent internalization

งานศึกษาหนึ่งทดลองโดยแทรกการกลายพันธุ์แบบ point mutation เข้าในยีนที่เข้ารหัสหน่วยรับ chemokine receptor คือ CXCR2 เซลล์ที่กลายพันธุ์จะแปลงสภาพเป็นแบบร้าย (malignant transformation) เนื่องจากการแสดงออกของยีน CXCR2 ที่อยู่ในสภาพกัมมันต์รังสี (active conformation) แม้จะไม่ได้จับกับ chemokine นี่เป็นวิธีที่ chemokine receptor อาจมีส่วนในพัฒนาการของมะเร็ง

protein kinase สำหรับไทโรซีน, Ser/Thr และ Histidine

หน่วยรับ Receptor tyrosine kinases (RTKs) เป็นโปรตีนผ่านเยื่อหุ้มเซลล์ที่มีโดเมน kinase ในเซลล์ บวกกับโดเมนนอกเซลล์ที่สามารถจับกับลิแกนด์ ตัวอย่างรวมทั้ง growth factor receptors เช่น insulin receptor เพื่อถ่ายโอนสัญญาณ RTKs จำเป็นต้องอยู่ในรูปแบบไดเมอร์ (คือ มีหน่วยเหมือนกันที่จับคู่กัน) ที่เยื่อหุ้มเซลล์ โดยไดเมอร์จะเกิดความเสถียรเมื่อลิแกนด์จับกับหน่วยรับ ต่อจากนั้น ปฏิสัมพันธ์ระหว่างโดเมนในไซโทพลาซึมจะกระตุ้นให้เกิดปฏิกิริยาฟอสโฟรีเลชันอัตโนมัติ (autophosphorylation) ของเรซิดิว tyrosine ภายในโดเมน kinase ที่อยู่ภายในเซลล์ แล้วทำให้เปลี่ยนโครงรูป จากนั้นโดเมน kinase ก็จะออกฤทธิ์ โดยจุดชนวนลำดับการส่งสัญญาณที่อาศัยปฏิกิริยาฟอสโฟรีเลชันสำหรับโมเลกุลในไซโทพลาซึมต่อ ๆ ไป (downstream) ที่อำนวยกระบวนการต่าง ๆ ของเซลล์ เช่น การเปลี่ยนสภาพ (cell differentiation) และเมแทบอลิซึม

protein kinase สำหรับ Ser/Thr และ dual-specificity kinase หลายอย่างสำคัญต่อการถ่ายโอนสัญญาณ ไม่ว่าจะออกฤทธิ์ในลำดับหลังจาก RTK หรืออาจทำหน้าที่เช่นกับ RTK โดยฝังอยู่ที่เยื่อหุ้มเซลล์หรือเป็นสารละลายเองในเซลล์ มีกระบวนการถ่ายโอนสัญญาณที่เกี่ยวข้องกับ protein kinase และ pseudokinase ราว ๆ 560 อย่างที่รู้จักภายในจีโนมมนุษย์

เหมือนกับ GPCR จีโปรตีนที่จับกับ GTP มีบทบาทสำคัญในการถ่ายโอนสัญญาณจาก RTK แบบกัมมันต์เข้าไปในเซลล์ ในกรณีนี้ จีโปรตีนจะเป็นสมาชิกของกลุ่ม GTPases คือ Ras, Rho, และ Raf โดยเรียกร่วมกัน ๆ ได้ว่า จีโปรตีนแบบเล็ก (small G protein) ซึ่งทำงานเหมือนกับสวิตช์โมเลกุลที่ปกติจะผูกอยู่กับเยื่อหุ้มเซลล์โดยกลุ่ม isoprenyl ที่เชื่อมกับส่วนสุดข้างที่เป็น carboxyl เมื่อมีสภาพกัมมันต์ จีโปรตีนก็จะส่งโปรตีนไปที่ซับโดเมนของเยื่อหุ้มเซลล์โดยเฉพาะ ๆ ซึ่งเป็นที่ที่โปรตีนมีส่วนส่งสัญญาณ ดังนั้น ในสภาพกัมมันต์ RTK จะก่อสภาพกัมมันต์ของจีโปรตีนแบบเล็ก ซึ่งก็เริ่มการทำงานของ guanine nucleotide exchange factor เช่น SOS1 เมื่อออกฤทธิ์แล้ว exchange factor เหล่านี้ก็สามารถเริ่มการทำงานของจีโปรตีนแบบเล็กอื่น ๆ อีก นี่เป็นการขยายต่อสัญญาณที่หน่วยรับได้โดยดั้งเดิม

การกลายพันธุ์ของยีน RTK บางอย่าง เหมือนกับที่เกิดใน GPCR อาจมีผลเป็นการแสดงออกของหน่วยรับที่อยู่ในสภาพกัมมันต์แม้ไม่ได้จับกับลิแกนด์ ยีนกลายพันธุ์เช่นนี้อาจเป็นยีนมะเร็ง (oncogene)

Histidine-specific protein kinases มีโครงสร้างที่ต่างจาก protein kinase อื่น ๆ และพบอยู่ในโพรแคริโอต เห็ดรา และพืช โดยเป็นส่วนของกลไกถ่ายโอนสัญญาณที่มีองค์ประกอบสองอย่าง คือ ในเบื้องต้นจะเติมกลุ่มฟอสเฟตจากอะดีโนซีนไตรฟอสเฟต (ATP) เข้ากับเรซิดิว histidine ภายใน kinase แล้วจากนั้นจึงโอนไปให้เรซิดิว aspartate ในโดเมนส่วนรับของโปรตีนอื่น หรือของ kinase เอง ซึ่งเริ่มการทำงานของเรซิดิว aspartate

Integrins

ภาพรวมของการถ่ายโอนสัญญาณที่อำนวยโดย integrin (ปรับใช้จาก Hehlgens et al. 2007)

เซลล์มากมายหลายแบบผลิต integrin ซึ่งมีบทบาทในการยึดเซลล์เข้ากับเซลล์อื่น ๆ หรือกับเมทริกซ์นอกเซลล์ และในการถ่ายโอนสัญญาณจากองค์ประกอบของเมทริกซ์นอกเซลล์ เช่น fibronectin และคอลลาเจน ลิแกนด์ที่ยึดเข้ากับโดเมนนอกเซลล์ของ integrin จะเปลี่ยนโครงรูปของโปรตีน ซึ่งจุดชนวนการถ่ายโอนสัญญาณ แต่ integrin เองไม่มีส่วนที่ออกฤทธิ์แบบ kinase ดังนั้น กาถถ่ายโอนสัญญาณที่อำนวยโดย integrin จะทำผ่าน protein kinase และโมเลกุลอะแด็ปเตอร์ต่าง ๆ โดยตัวประสานงานหลักก็คือ integrin-linked kinase (ILK) ในรูป การส่งสัญญาณร่วมกันของ integrin-RTK จะกำหนดชั่วอายุของเซลล์ อะพอพโทซิส การเพิ่มจำนวนเซลล์ และการเปลี่ยนสภาพให้แตกต่าง (differentiation)

การส่งสัญญาณโดยอาศัย integrin จะแตกต่างอย่างสำคัญระหว่างเซลล์เม็ดเลือดที่ไหลเวียนและเซลล์ที่ไม่ไหลเวียน เช่น เซลล์เยื่อบุผิว เพราะในเซลล์ที่ไหลเวียน integrin จะอยู่ในรูปแบบที่ไม่มีฤทธิ์ (ในสภาพอกัมมันต์) ยกตัวอย่างเช่น integrin บนเยื่อบุผิวของเม็ดเลือดขาวที่ไหลเวียน ปกติจะรักษาให้อยู่ในสภาพอกัมมันต์ เพื่อป้องกันไม่ให้ยึดกับเซลล์เยื่อบุผิวอื่น ๆ แต่จะออกฤทธิ์เมื่อตอบสนองต่อสิ่งเร้า เช่นที่ได้ในบริเวณที่เกิดการอักเสบ และในนัยเดียวกัน integrin ที่เยื่อหุ้มเซลล์ของเกล็ดเลือดที่ไหลเวียน ปกติจะไม่มีฤทธิ์เพื่อไม่ให้เกิดภาวะหลอดเลือดมีลิ่มเลือด (thrombosis) แต่เซลล์เยื่อบุผิว (ซึ่งไม่ใช่เซลล์ไหลเวียน) ปกติจะมี integrin ในรูปแบบซึ่งมีฤทธิ์ที่เยื่อหุ้มเซลล์ อันช่วยให้ยึดอยู่อย่างเสถียรกับเซลล์ส่วนพยุง (stromal cells) ซึ่งเป็นเซลล์ข้างใต้ที่ยังให้สัญญาณเพื่อดำรงการทำงานให้เป็นปกติด้วย

ในพืช ยังไม่พบหน่วยรับ integrin ที่น่าเชื่อถือ อย่างไรก็ดี มีการเสนอโปรตีนคล้าย integrin หลายอย่าง เพราะมีโครงสร้างที่มีต้นกำเนิดเดียวกันกับ metazoan receptor ที่น่าแปลกใจก็คือ พืชมี ILK ที่มีโครงสร้างปฐมภูมิคล้ายกับ ILK ของสัตว์อย่างมาก

ในพืชแบบจำลองในวงศ์ผักกาดคือ Arabidopsis thaliana ยีน ILK1 พบว่า เป็นองค์ประกอบที่ขาดไม่ได้ในการตอบสนองทางภูมิคุ้มกันของพืชต่อโมเลกุลส่งสัญญาณจากเชื้อโรค และในความไวต่อเกลือและต่อความเปลี่ยนแปลงทางออสโมซิสอื่น ๆ โปรตีน ILK1 จะมีปฏิสัมพันธ์กับโปรตีนขนส่งโพแทสเซียม คือ HAK5 ที่มีสัมพรรคภาพสูง และกับหน่วยรับแคลเซียมคือ CML9

Toll-like receptors

เมื่อเปลี่ยนเป็นสภาพกัมมันต์ toll-like receptors (TLRs) จะใช้โมเลกุลอะแด็ปเตอร์ภายในไซโทพลาซึมเพื่อแพร่สัญญาณต่อไป มีโมเลกุลอะแด็ปเตอร์ 4 อย่างที่รู้ว่ามีบทบาทในการส่งสัญญาณ คือ Myd88, TIRAP, TRIF, และ TRAM อะแด็ปเตอร์เหล่านี้จะเริ่มการทำงานของโมเลกุลในเซลล์อื่น ๆ รวมทั้ง IRAK1, IRAK4, TBK1, และ IKKi เป็นการขยายสัญญาณ ซึ่งในที่สุดนำไปสู่การเหนี่ยวนำหรือการยับยั้งการแสดงออกของยีนที่ทำให้เกิดการตอบสนองต่าง ๆ ยีนเป็นพัน ๆ เริ่มทำงานเนื่องกับการส่งสัญญาณแบบ TLR ซึ่งแสดงนัยว่า กระบวนการนี้เป็นทางผ่านที่สำคัญในการควบคุมการแสดงออกของยีน

ช่องไอออนที่เปิดปิดโดยลิแกนด์

ช่องไอออนที่เปิดปิดโดยลิแกนด์ (ligand-gated ion channel) เมื่อจับกับลิแกนด์ก็จะเปลี่ยนโครงรูป แล้วเปิดช่องที่เยื่อหุ้มเซลล์ให้ไอออนซึ่งเป็นตัวส่งสัญญาณสามารถผ่านเข้าได้

ตัวอย่างของกลไกนี้พบได้ที่ไซแนปส์ของเซลล์ประสาทซึ่งเป็นตัวรับสัญญาณ คือ ไอออนที่ไหลเข้าไปในช่องที่เปิดโดยกระบวนการนี้ จะนำไปสู่การสร้างศักยะงานที่ส่งไปตามเส้นประสาท เพราะไอออนที่ไหลเข้าจะลดขั้วเซลล์ ซึ่งนำไปสู่การเปิดช่องไอออนที่เปิดปิดด้วยศักย์ไฟฟ้า (voltage-gated ion channel)

ตัวอย่างของไอออนที่ไหลเข้าในเซลล์เมื่อช่องไอออนเปิดปิดด้วยลิแกนดต์เปิดก็คือ Ca2+ ซึ่งทำหน้าที่เป็นโมเลกุลส่งสัญญาณที่สองโดยจุดชนวนลำดับการส่งสัญญาณที่เปลี่ยนสรีรภาพของเซลล์ ซึ่งมีผลขยายการตอบสนองต่อสัญญาณทางไซแนปส์ โดยเปลี่ยนลักษณะของเดนไดรติก สไปน์ ที่ไซแนปส์

หน่วยรับในเซลล์

หน่วยรับในเซลล์ เช่น หน่วยรับที่นิวเคลียส (nuclear receptor) และหน่วยรับในไซโทพลาสซึม (cytoplasmic receptor) เป็นโปรตีนละลายได้และอยู่เฉพาะที่ ๆ ลิแกนด์ทั่ว ๆ ไปของหน่วยรับที่นิวเคลียส จะเป็นฮอร์โมนไร้ขั้ว เช่น สเตอรอยด์ เทสโทสเตอโรน โพรเจสเทอโรน และสารอนุพันธ์ของวิตามินเอและวิตามินดี เมื่อลิแกนด์จับกับหน่วยรับ คอมเพล็กซ์ลิแกนด์+หน่วยรับก็จะผ่านเยื่อนิวเคลียสเข้าไปในนิวเคลียสแล้วเปลี่ยนการแสดงออกของยีน

หน่วยรับกัมมันต์จะเข้ายึดกับดีเอ็นเอที่ลำดับ hormone-responsive element (HRE) โดยเฉพาะ ซึ่งอยู่ในบริเวณ promoter ของยีนที่จะเริ่มทำงานเนื่องกับคอมเพล็กซ์ฮอร์โมน-หน่วยรับ ฮอร์โมนทั้งหมดที่มีฤทธิ์ควบคุมการแสดงออกของยีน มีลักษณะสองอย่างตามกลไกการทำงานของมัน คือใช้เวลานานก่อนจะเกิดผลและผลก็จะคงยืนเป็นเวลานานด้วย แม้หลังจากความเข้มข้นจะลดจนเหลือ 0 เนื่องจากเอนไซม์และโปรตีนโดยมากจะหมุนเวียนค่อนข้างช้า แต่เป็นเอนไซม์และโปรตีนซึ่งจำเป็นเพื่อยุติการจับกันระหว่างลิแกนด์กับหน่วยรับ

หน่วยรับในเซลล์บางอย่างของระบบภูมิคุ้มกันจะอยู่ในไซโทพลาซึม หน่วยรับ NOD-like receptors (NLRs) ที่พึ่งค้นพบได้ไม่นาน อยู่ในไซโทพลาซึมของเซลล์ยูแคริโอตบางอย่าง และมีปฏิสัมพันธ์กับลิแกนด์โดยใช้ leucine-rich repeat (LRR) motif เหมือนกับ TLR คือ โมเลกุลเหล่านี้บางส่วนเช่น NOD2 จะมีปฏิสัมพันธ์กับ RIP2 kinase ที่เริ่มการส่งสัญญาณของ NF-κB และบางส่วนเช่น NALP3 จะมีปฏิสัมพันธ์กับเอนไซม์ caspase ซึ่งเกี่ยวกับกระบวนการอักเสบ แล้วจุดชนวนการดำเนินงานกับ cytokine โดยเฉพาะ ๆ เช่น interleukin-1β

โมเลกุลส่งสัญญาณที่สอง

ข้อมูลเพิ่มเติม: โมเลกุลส่งสัญญาณที่สอง

โมเลกุลส่งสัญญาณที่หนึ่งอาจเป็นฮอร์โมน สารสื่อประสาท และสารส่งสัญญาณแบบ paracrine (จากเซลล์ข้าง ๆ) หรือ autocrine (หรือจากตนเอง) ที่เข้ามาถึงเซลล์จากสื่อรอบ ๆ เซลล์แล้วจับกับหน่วยรับโดยเฉพาะ ๆ ส่วนโมเลกุลส่งสัญญาณที่สองก็คือสารที่เข้าไปในไซโทพลาซึม แล้วออกฤทธิ์ภายในเซลล์ให้เกิดการตอบสนอง หลัก ๆ ก็คือ โมเลกุลส่งสัญญาณที่สองเป็นตัวรีเลย์ทางเคมีจากเยื่อหุ้มเซลล์ไปยังไซโทพลาซึม เป็นตัวถ่ายโอนสัญญาณภายในเซลล์

แคลเซียม

ไอออนแคลเซียมที่ปล่อยจากร่างแหเอนโดพลาซึม (ER) เข้าไปในไซโตซอล จะจับกับโปรตีนส่งสัญญาณทำให้เปลี่ยนเป็นสารกัมมันต์ หลังจากนั้นมันจึงจะแยกเก็บใน smooth endoplasmic reticulum และไมโทคอนเดรีย โปรตีนหน่วยรับที่ประกอบกับช่องไอออนสองอย่างเป็นตัวควบคุมการปล่อยแคลเซียมผ่านเยื่อ ER

โปรตีน Inositol trisphosphate receptor (InsP3-receptor) จะเริ่มปล่อยแคลเซียมหลังจากมีปฏิสัมพันธ์กับ inositol triphosphate (IP3) ทางด้านไซโตซอล ส่วน ryanodine receptor ซึ่งตั้งชื่อตามแอลคาลอยด์ ryanodine จะคล้ายกับ InsP3 receptor แต่มีปฏิสัมพันธ์กับแคลแซียมเอง ดังนั้น จึงเป็นกลไกการป้อนกลับเชิงบวกที่ปล่อยแคลเซียมออกเพิ่มขึ้นหลังจับกันมันทางด้านไซโตซอล ความเป็นไปของแคลเซียมในไซโตซอลหมายความว่า มันมีฤทธิ์ในช่วงระยะที่สั้นมาก คือ มีความเข้มข้นต่ำมากเมื่อเป็นอิสระ และในสภาพอกัมมันต์ โดยมากก็จะจับอยู่กับโมเลกุลในออร์แกเนลล์ เช่น calreticulin

แคลเซียมมีบทบาทในกระบวนการต่าง ๆ มากมายรวมทั้งการหดเกร็งกล้ามเนื้อ การปล่อยสารสื่อประสาทจากประสาท และการย้ายที่เซลล์ (cell migration) วิถีการถ่ายโอนสัญญาณหลัก ๆ 3 ทาง ที่ทำให้แคลเซียมออกฤทธิ์รวมทั้ง GPCR pathway, RTK pathway, และช่องไอออนที่เปิดปิดโดยวิธีต่าง ๆ แคลเซียมออกฤทธิ์ควบคุมโปรตีนไม่ว่าจะโดยตรงหรือว่าโดยจับกับเอนไซม์

ลิพิดส่งสัญญาณ

โมเลกุลส่งสัญญาณที่สองซึ่งชอบลิพิด เป็นสารอนุพันธ์จากลิพิดที่อยู่ในเยื่อหุ้มเซลล์ โดยเอนไซม์ที่กระตุ้นโดยหน่วยรับกัมมันต์ จะเปลี่ยนลิพิดให้มีสภาพกัมมันต์เป็นโมเลกุลส่งสัญญาณที่สอง ตัวอย่างรวมทั้ง diacylglycerol และ ceramide โดยอย่างแรกจำเป็นในการก่อกัมมันต์ของ protein kinase C

ไนตริกออกไซด์

ไนตริกออกไซด์ (NO) สามารถออกฤทธิ์เป็นโมเลกุลส่งสัญญาณที่สอง เพราะมันเป็นอนุมูลอิสระอย่างหนึ่งที่สามารถแพร่ผ่านเยื่อหุ้มเซลล์ แล้วออกฤทธิ์ต่อเซลล์ที่อยู่ใกล้ ๆ มันสังเคราะห์มาจากอาร์จินีนและออกซิเจนโดย Nitric oxide synthase (NO synthase) และออกฤทธิ์โดยก่อสภาพกัมมันต์ของ soluble guanylyl cyclase แล้วสร้างโมเลกุลส่งสัญญาณที่สอง คือ cGMP อนึ่ง NO ยังสามารถออกฤทธิ์ผ่านการเปลี่ยนพันธะโคเวเลนต์ของโปรตีนหรือของ metal co-factor ของโปรตีน ซึ่งบางอย่างมีกลไกผ่านปฏิกิริยารีดอกซ์ที่สามารถผันกลับได้ NO มีพิษถ้าเข้มข้นสูง และทำความเสียหายเมื่อเกิดเส้นเลือดอุดตันในสมอง แต่ก็เป็นเหตุของกลไกการทำงานต่าง ๆ ในร่างกายเช่น การคลายเส้นเลือด อะพอพโทซิส และการแข็งตัวขององคชาต

การส่งสัญญาณโดยปฏิกิริยารีดอกซ์

นอกจากไนตริกออกไซด์ ยังมีสารเคมีอื่น ๆ ที่สามารถถ่ายโอนสัญญาณโดยปฏิกิริยารีดอกซ์ (redox signaling) ตัวอย่างรวมทั้ง superoxide, ไฮโดรเจนเพอร์ออกไซด์, คาร์บอนมอนอกไซด์, และไฮโดรเจนซัลไฟด์ การส่งสัญญาณโดยปฏิกิริยารีดอกซ์รวมการควบคุมการไหลของกระแสไฟฟ้าอย่างแอ๊กถีฟในแมโครโมเลกุลชีวภาพแบบกึ่งตัวนำ

การตอบสนองของเซลล์

การเริ่มการทำงาน/การก่อสภาพกัมมันต์ของยีน (gene activation) และการเปลี่ยนเมทาบอลิซึม เป็นตัวอย่างการตอบสนองของเซลล์ต่อสิ่งเร้านอกเซลล์ผ่านการถ่ายโอนสัญญาณ และยีนในสภาพกัมมันต์ก็จะมีผลอื่น ๆ ภายในเซลล์ เพราะผลิตภัณฑ์ของยีนเป็นตัวก่อให้เกิดสภาพกัมมันต์อื่น ๆ คือแฟกเตอร์ถอดรหัส (transcription factor) ที่เป็นผลของลำดับการถ่ายโอนสัญญาณ สามารถก่อสภาพกัมมันต์ของยีนอื่น ๆ อีก ดังนั้น สิ่งเร้าเบื้องต้นสามารถจุดชนวนการแสดงออกของยีนจำนวนมาก ทำให้เกิดเหตุการณ์ทางสรีรภาพ เช่น การดูดซึมกลูโคสนำเข้าเนื้อเยื่อจากเลือด และการย้ายที่ของ neutrophils ไปยังบริเวณที่ติดเชื้อ เซตของยีนและลำดับการทำงานของพวกมันเนื่องจากสิ่งเร้าโดยเฉพาะ ๆ จะเรียกว่าได้ว่า โปรแกรมยีน (genetic program)

เซลล์ของสัตว์เลี้ยงลูกด้วยนมจะต้องได้รับสิ่งเร้าเพื่อการแบ่งเซลล์และการรอดชีวิต ถ้าไร้ growth factor อะพอพโทซิสก็จะเกิดขึ้น เพราะการได้สิ่งเร้าจากนอกเซลล์เป็นเรื่องจำเป็นในการควบคุมการทำงานของเซลล์ทั้งในสิ่งมีชีวิตเซลล์เดียวและหลายเซลล์ วิถีการถ่ายโอนสัญญาณจึงพิจารณาว่าเป็นหลักสำคัญของกระบวนการทางชีวภาพ จนกระทั่งโรคจำนวนมากได้อ้างว่า มีเหตุจากการทำงานผิดปกติของพวกมัน

สัญญาณพื้นฐาน 3 อย่างเป็นตัวกำหนดการเติบโตของเซลล์

  • แบบกระตุ้นจาก growth factor
    • การตอบสนองที่อาศัยการถอดรหัส
      ตัวอย่างเช่น สเตอรอยด์สามารถออกฤทธิ์โดยตรงเป็นแฟกเตอร์ถอดรหัส ทำให้ตอบสนองค่อนข้างช้า เพราะมันต้องจับกับดีเอ็นเอแล้วตามด้วยการถอดรหัส เอ็มอาร์เอ็นเอที่ผลิตก็จะต้องแปล และโปรตีน/เพปไทด์ที่ผลิตอาจต้องผ่านกระบวนการดัดแปลงหลังแปล (Post-translational modification)
    • การตอบสนองที่เป็นอิสระจากการถอดรหัส
      ตัวอย่างเช่น epidermal growth factor (EGF) จะจับกับหน่วยรับคือ epidermal growth factor receptor (EGFR) ซึ่งทำให้ EGFR เปลี่ยนรูปแบบเป็นไดเมอร์หรือเกิดปฏิกิริยาฟอสโฟรีเลชันอัตโนมัติ (autophosphorylation) ซึ่งก็จะจุดชนวนวิถีการส่งสัญญาณภายในเซลล์ลำดับต่อ ๆ ไป
  • แบบยับยั้งเมื่อเซลล์มาถูกกัน (cell-cell contact)
  • แบบ permissive โดยเป็นปฏิสัมพันธ์ระหว่างเซลล์และเมทริกซ์นอกเซลล์

สัญญาณเหล่านี้ รวม ๆ มีผลเป็นการทำงานในไซโทพลาสซึมที่ต่าง ๆ กัน ทำให้เซลล์ตอบสนองต่าง ๆ กัน

วิถีการถ่ายโอนสัญญาณหลัก ๆ

ต่อไปนี้เป็นวิถีการถ่ายโอนสัญญาณหลัก ๆ บางอย่าง ซึ่งแสดงการจับของลิแกนด์กับหน่วยรับ โดยอาจมีผลต่อโมเลกุลส่งสัญญาณที่สอง แล้วในที่สุดเปลี่ยนการตอบสนองของเซลล์

  • MAPK/ERK pathway - เป็นวิถีที่ทำให้เซลล์ตอบสนองเนื่องกับการจับกันของ growth factor กับหน่วยรับที่ผิวเซลล์ด้านนอก เป็นวิถีที่ซับซ้อนและมีองค์ประกอบเป็นโปรตีนมากมายหลายชนิด ในเซลล์หลายชนิด การทำงานของวิถีนี้โปรโหมตการแบ่งเซลล์ และรูปแบบของมะเร็งหลายอย่างสัมพันธ์กับการทำงานที่ผิดปกติ
  • cAMP-dependent pathway - ในมนุษย์ cAMP ทำหน้าที่โดยเริ่มการทำงานของ protein kinase A (PKA, cAMP-dependent protein kinase) (ดูรูป) ดังนั้น ผลสืบ ๆ มาจะขึ้นอยู่กับ cAMP-dependent protein kinase ซึ่งจะต่าง ๆ กันขึ้นอยู่กับชนิดของเซลล์
  • IP3/DAG pathway - Phospholipase C (PLC) จะแยกฟอสโฟลิพิด คือ phosphatidylinositol 4,5-bisphosphate (PIP2) ให้เป็น diacyl glycerol (DAG) และ inositol 1,4,5-triphosphate (IP3) ผลผลิตคือ DAG จะดำรงยึดอยู่กับเยื่อหุ้มเซลล์ ในขณะที่ IP3 จะแยกออกเป็นโครงสร้างละลายได้แล้วแพร่ไปในไซโตซอลเข้ายึดกับหน่วยรับ IP3 receptor โดยเฉพาะที่ประกอบกับช่องแคลเซียมที่ร่างแหเอนโดพลาซึม (ER) ช่องเหล่านี้จำกัดเฉพาะกับแคลเซียม และปล่อยให้แคลเซียมเท่านั้นไหลผ่าน ซึ่งเพิ่มความเข้มข้นของแคลเซียมภายในไซโตซอล และเป็นเหตุให้ลำดับการเปลี่ยนแปลงและการทำงานของเซลล์ต่อ ๆ ไปเกิดขึ้น อนึ่ง แคลเซียมจะทำงานร่วมกับ DAG เพื่อเริ่มการทำงานของ protein kinase C (PKC) ซึ่งก็จะเพิ่มกลุ่ม phosphoryl ให้กับโมเลกุลอื่นผ่านปฏิกิริยาฟอสโฟรีเลชัน แล้วเปลี่ยนการทำงานของเซลล์ ผลที่สุดของกระบวนการนี้รวมทั้งการรู้รส โรคอารมณ์สองขั้ว การโปรโหมตเนื้องอก เป็นต้น

ประวัติ

การใช้คำว่า "signal transduction" (การถ่ายโอนสัญญาณ) ในวรรณกรรมที่ทำดัชนีโดย MEDLINE ตั้งแต่ปี 1977

ไอเดียแรกสุดเกี่ยวกับการถ่ายโอนสัญญาณเริ่มมาจากปี 1855 เมื่อนักสรีรวิทยาชาวฝรั่งเศส (Claude Bernard) เสนอว่า ต่อมไร้ท่อเช่น ม้าม ต่อมไทรอยด์ และต่อมหมวกไต เป็นตัวการปล่อย "สารหลั่งภายใน (internal secretions)" ที่มีผลทางสรีรภาพ ต่อมานักสรีรวิทยาชาวอังกฤษ (Ernest Starling) จึงตั้งชื่อสารหลั่งเช่นนี้ว่า "ฮอร์โมน" ในปี 1905 โดยร่วมงานกับนักสรีรวิทยาชาวอังกฤษอีกท่าน (William Bayliss) ทั้งสองได้ระบุฮอร์โมน secretin ในปี 1902 ในปีต่อ ๆ มาแม้จะได้ค้นพบฮอร์โมนอื่น ๆ อีกมากมาย ที่เด่นสุดก็คืออินซูลิน แต่กลไกการทำงานก็ยังไม่ได้ระบุ

การค้นพบ nerve growth factor ของนักประสาทวิทยาชาวอิตาลี (Rita Levi-Montalcini) ในปี 1954 และ epidermal growth factor ของนักเคมีชีวภาพชาวอเมริกัน (Stanley Cohen) ในปี 1962 ทำให้เข้าใจพื้นฐานในระดับโมเลกุลของการถ่ายโอนสัญญาณมากขึ้น โดยเฉพาะที่เกี่ยวกับ growth factor พร้อมกับงานค้นพบ cyclic AMP ของนักเคมีชีวภาพชาวอเมริกัน (Earl Wilbur Sutherland) ในปี 1956 งานเหล่านี้ทำให้ต้องนิยามความหมายของคำว่า endocrine signaling ใหม่โดยรวมแต่การส่งสัญญาณจากต่อมต่าง ๆ แล้วเริ่มการใช้คำว่า autocrine (การส่งสัญญาณให้ตัวเอง) และ paracrine (การส่งสัญญาณให้เซลล์ข้าง ๆ) เพราะงานเหล่านี้ นักวิชาการพวกนี้จึงได้รับรางวัลโนเบลสาขาสรีรวิทยาหรือการแพทย์ในปี 1971 (คนหลังสุด) และ 1986 (สองคนแรก)

ในปี 1970 นักเคมีชีวภาพชาวอเมริกัน (Martin Rodbell) ตรวจสอบกลูคากอนที่หน่วยรับที่เยื่อหุ้มเซลล์ของตับในหนู แล้วให้ข้อสังเกตว่า guanosine triphosphate (GTP) ทำให้กลูคากอนแตกออกจากหน่วยรับแล้วไปกระตุ้นจีโปรตีน ซึ่งมีผลที่มีกำลังต่อเมแทบอลิซึมของเซลล์ ดังนั้น เขาจึงสรุปโดยนิรนัยว่า จีโปรตีนเป็นตัวแปรสัญญาณ (transducer) ที่ออกฤทธิ์เมื่อได้กลูคากอน แล้วจึงมีผลต่อเซลล์ ในปี 1994 เขาจึงได้รับรางวัลโนเบลสาขาสรีรวิทยาหรือการแพทย์ร่วมกันนักเคมีชีวภาพชาวอเมริกันอีกท่านหนึ่ง (Alfred G. Gilman)

การระบุ RTK และ GPCR ต่อมาจึงนำไปสู่ไอเดียเกี่ยวกับการถ่ายโอนสัญญาณ (signal transduction) โดยเป็นคำที่ใช้เป็นครั้งแรกในปี 1972 แม้วรรณกรรมต้น ๆ ก็ได้ใช้คำว่า signal transmission และ sensory transduction (การถ่ายโอนความรู้สึก) ด้วย

ในปี 2007 มีงานตีพิมพ์ทางวิทยาศาสตร์ 48,377 งาน รวมงานทบทวนโดยผู้รู้เสมอกัน 11,211 งาน เกี่ยวกับประเด็นนี้ โดยเป็นคำที่ปรากฏในชื่อของวรรรณกรรมเป็นครั้งแรกในปี 1979 คำเริ่มนิยมแพร่หลายเพิ่มขึ้นเริ่มตั้งแต่งานทบทวนวรรณกรรมในปี 1980 (ของ Martin Rodbell) และงานวิจัยเฉพาะในเรื่องการถ่ายโอนสัญญาณก็เริ่มปรากฏอย่างแพร่หลายในปลายคริสต์ทศวรรษ 1980 และต้นทศวรรษ 1990

ดูเพิ่ม

เชิงอรรถ

แหล่งข้อมูลอื่น


Новое сообщение