Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

ระบบรู้กลิ่น

Подписчиков: 0, рейтинг: 0

ระบบรู้กลิ่น หรือ ระบบรับกลิ่น (อังกฤษ: olfactory system) เป็นส่วนของระบบรับความรู้สึกที่ใช้เพื่อรับกลิ่น สัตว์เลี้ยงลูกด้วยนมและสัตว์เลื้อยคลานโดยมากจะมีทั้งระบบรับกลิ่นหลัก (main olfactory system) และระบบรับกลิ่นเสริม (accessory olfactory system) ระบบหลักจะรับกลิ่นจากอากาศ ส่วนระบบเสริมจะรับกลิ่นที่เป็นน้ำ ประสาทสัมผัสเกี่ยวกับกลิ่นและรสชาติ บ่อยครั้งเรียกรวมกันว่าระบบรับรู้สารเคมี (chemosensory system) เพราะทั้งสองให้ข้อมูลแก่สมองเกี่ยวกับองค์ประกอบทางเคมีของสิ่งเร้าผ่านกระบวนการที่เรียกว่า การถ่ายโอนความรู้สึก (transduction) กลิ่นช่วยให้ข้อมูลเกี่ยวกับอาหารและแหล่งอาหาร เกี่ยวกับความสุขหรืออันตรายที่อาจได้จากอาหาร เกี่ยวกับอันตรายที่สารอื่น ๆ ในสิ่งแวดล้อมอาจมี ให้ข้อมูลเกี่ยวกับตนเอง ผู้อื่น และสัตว์ชนิดอื่น ๆ กลิ่นมีผลทางสรีรภาพโดยเริ่มกระบวนการย่อยอาหารและการใช้พลังงาน มีบทบาทในการสืบพันธุ์ การป้องกันตัว และพฤติกรรมเกี่ยวกับอาหาร ในสัตว์บางชนิด มีบทบาทสำคัญทางสังคมเพราะตรวจจับฟีโรโมนซึ่งมีผลทางสรีรภาพและพฤติกรรม ในทางวิวัฒนาการแล้ว ระบบรับกลิ่นเป็นประสาทสัมผัสที่เก่าแก่ที่สุด แม้จะเป็นระบบที่เข้าใจน้อยที่สุดในบรรดาประสาทสัมผัสทั้งหมด

ระบบรับกลิ่นจะอาศัยหน่วยรับกลิ่น (olfactory receptor) ซึ่งเป็นโปรตีนหน่วยรับความรู้สึกแบบ G protein coupled receptor (GPCR) และอาศัยกระบวนการส่งสัญญาณทางเคมีที่เกิดตามลำดับภายในเซลล์ซึ่งเรียกว่า second messenger system เพื่อถ่ายโอนข้อมูลกลิ่นเป็นกระแสประสาท หน่วยรับกลิ่นจะแสดงออกอยู่ที่เซลล์ประสาทรับกลิ่นในเยื่อรับกลิ่นในโพรงจมูก เมื่อหน่วยรับกลิ่นต่าง ๆ ทำงานในระดับที่สมควร เซลล์ประสาทก็จะสร้างศักยะงานส่งไปยังส่วนต่าง ๆ ของระบบประสาทกลางเริ่มตั้งแต่ป่องรับกลิ่น ซึ่งก็จะมีอิทธิพลต่อพฤติกรรมเป็นต้นของสัตว์

นักเคมีเกี่ยวกับกลิ่นก็ประเมินว่า มนุษย์อาจสามารถแยกแยะกลิ่นระเหยได้ถึง 10,000 รูปแบบ โดยที่ผู้เชี่ยวชาญเกี่ยวกับของหอมอาจแยกแยะกลิ่นได้ถึง 5,000 ชนิด และผู้เชี่ยวชาญเกี่ยวกับไวน์อาจแยกแยะส่วนผสมได้ถึง 100 อย่าง โดยสามารถรู้กลิ่นต่าง ๆ ในระดับความเข้มข้นต่าง ๆ กัน เช่น สามารถรู้สารกลิ่นหลักของพริกชี้ฟ้า คือ 2-isobutyl-3-methoxypyrazine ในอากาศที่มีความเข้มข้น 0.01 นาโนโมล ซึ่งประมาณเท่ากับ 1 โมเลกุลต่อ 1,000 ล้านโมเลกุลของอากาศ สามารถรู้กลิ่นเอทานอลที่ความเข้มข้น 2 มิลลิโมล และสามารถรู้กลิ่นโครงสร้างทางเคมีที่ต่างกันเล็กน้อยในระดับโมเลกุล เช่น กลิ่นของ D-carvone จะต่างจากของ L-carvone โดยมีกลิ่นเหมือนกับเทียนตากบและมินต์ตามลำดับ

ถึงกระนั้น การได้กลิ่นก็พิจารณาว่าเป็นประสาทสัมผัสที่แย่ที่สุดอย่างหนึ่งในมนุษย์ โดยมีสัตว์อื่น ๆ ที่รู้กลิ่นได้ดีกว่า เช่น สัตว์เลี้ยงลูกด้วยนมเกินกว่าครึ่ง ซึ่งอาจเป็นเพราะมนุษย์มีประเภทหน่วยรับกลิ่นที่น้อยกว่า และมีเขตในสมองส่วนหน้าที่อุทิศให้กับการแปลผลข้อมูลกลิ่นที่เล็กกว่าโดยเปรียบเทียบ

โครงสร้าง

สมองมนุษย์มองจากด้านล่าง ป่องรับกลิ่นและลำเส้นใยประสาทรู้กลิ่น (olfactory tracts) มีสีแดง (รูป Fabrica ปี ค.ศ. 1543 ของแอนเดรียส เวซาเลียส)

ระบบรับกลิ่นส่วนนอก

ระบบรับกลิ่นรอบนอกหลัก ๆ ประกอบด้วยช่องจมูก กระดูกเอทมอยด์ (คือ cribriform plate) และเยื่อรับกลิ่น (olfactory epithelium) ซึ่งเป็นเยื่อบุช่องจมูกบาง ๆ ที่ปกคลุมด้วยเมือก ส่วนประกอบหลัก ๆ ของชั้นเนื้อเยื่อรวมทั้งเมือก, เซลล์ประสาทรับกลิ่น (olfactory receptor neuron), ต่อมรับกลิ่น (olfactory/Bowman's gland), เซลล์ค้ำจุน (supporting cell), เซลล์ต้นกำเนิดชั้นฐาน (basal stem cell), และใยประสาทนำเข้าของประสาทรับกลิ่น (olfactory nerve) เยื่อรับกลิ่นในมนุษย์จะบุช่องจมูกโดยมีเนื้อที่ประมาณ 5 ซม2 โดยเซลล์ประสาทรับกลิ่น (ประมาณ 12 ล้านตัว เทียบกับสุนัขซึ่งมีถึง 125-300 ล้านตัว) และเซลล์ค้ำจุนจะมีอายุ 30-60 วันซึ่งจะทดแทนด้วยเซลล์ต้นกำเนิดชั้นฐานซึ่งพัฒนาขึ้นแทนที่เซลล์เก่า ๆ อยู่ตลอดเวลา

โมเลกุลกลิ่นจะเข้ามาในช่องจมูกผ่านรูจมูกเมื่อหายใจเข้า หรือผ่านคอเมื่อลิ้นดันอากาศไปที่ด้านหลังของช่องจมูกเมื่อกำลังเคี้ยวหรือกลืนอาหาร ภายในช่องจมูก เมือกบุเยื่อรับกลิ่นจะละลายโมเลกุลกลิ่นเพื่ออำนวยให้ทำปฏิกิริยากับหน่วยรับกลิ่น เมือกยังปกคลุมป้องกันเยื่อรับกลิ่น ซึ่งมีต่อมรับกลิ่นที่หลั่งเมือก และมีเซลล์ค้ำจุนที่มีเอนไซม์เพื่อสลายโมเลกุลอินทรีย์และโมเลกุลที่อาจเป็นอันตรายอื่น ๆ

การถ่ายโอนกลิ่นเป็นกระแสประสาท

เซลล์ประสาทรับกลิ่นเป็นเซลล์รับความรู้สึกในเยื่อบุผิวที่ตรวจจับโมเลกุลกลิ่นที่ละลายอยู่ในเมือก แล้วส่งข้อมูลกลิ่นไปยังสมองผ่านกระบวนการที่เรียกว่า การถ่ายโอนความรู้สึก (sensory transduction) เซลล์ประสาทรับกลิ่นแต่ละตัว ๆ จะมีซีเลียคือขนเล็ก ๆ จำนวนมากที่มีโปรตีนหน่วยรับกลิ่นโดยเฉพาะ ๆ ซึ่งจะยึดกับโมเลกุลกลิ่นโดยเฉพาะ ๆ แล้วเป็นเหตุให้เกิดการตอบสนองทางไฟฟ้าที่กระจายอย่างแพสซิฟไปตลอดตัวเซลล์ และเซลล์ก็จะสร้างศักยะงานส่งไปทางแอกซอน ที่รวมตัวเป็นมัดใยประสาทจำนวนมากที่รวม ๆ กันเรียกว่า ฆานประสาท (olfactory nerve, CN I) ซึ่งวิ่งผ่านรูของแผ่นกระดูกพรุน (cribriform plate) ไปยังป่องรับกลิ่นซีกร่างกายเดียวกันในระบบประสาทกลาง

สัตว์เลี้ยงลูกด้วยนมมีโปรตีนหน่วยรับกลิ่น (odor receptor) จำนวนมากที่จะยึดกับโมเลกุลกลิ่นโดยเฉพาะ ๆ และช่วยให้สามารถแยกแยะกลิ่นต่าง ๆ ได้ โดยมนุษย์อาจมีถึง 350 ชนิด เทียบกับหนูหริ่งที่มีถึง 1,000 ชนิด เพื่อให้แยกแยะกลิ่นได้ สมองต้องได้รับสัญญาณที่ไม่เหมือนกันจากจมูกสำหรับกลิ่นต่าง ๆ ซึ่งเกิดจากเหตุสองอย่าง คือ เซลล์ประสาทรับกลิ่นแต่ละประเภทจะแสดงออกหน่วยรับกลิ่นเพียงแค่ชนิดเดียว และแต่ละประเภทจะสามารถตอบสนองต่อกลิ่นได้หลายอย่าง ดังนั้น กลิ่นแต่ละกลิ่นจึงได้การตอบสนองจากเซลล์ประสาทรับกลิ่นหลายประเภทรวมกันเป็นการเข้ารหัสกลิ่นแบบผสม (combinational coding) และอาศัยเซลล์ประสาทรับกลิ่นน้อยตัว (sparse coding) ในบรรดาเซลล์รับกลิ่นทั้งหมด

นักวิชาการได้พบว่า ทั้งความแตกต่างทางโครงสร้างเล็ก ๆ น้อย ๆ และความหนาแน่นของโมเลกุลกลิ่น สามารถเปลี่ยนรูปแบบผสมที่เป็นการตอบสนองของเซลล์ประสาทกลุ่มต่าง ๆ แล้วทำให้ได้กลิ่นต่าง ๆ กัน โดยความหนาแน่นเพิ่มขึ้นจะมีผลทำหน่วยรับกลิ่น ซึ่งมีสัมพรรคภาพกับโมเลกุลกลิ่นต่ำและตอนแรกไม่ตอบสนองต่อกลิ่น ให้ตอบสนองเมื่อโมเลกุลกลิ่นหนาแน่นเพิ่มขึ้นต่อมา เช่นสารอินโดลที่ความหนาแน่นต่ำจะมีกลิ่นเหมือนดอกไม้ แต่ถ้าความหนาแน่นเพิ่มขึ้นอาจมีกลิ่นเน่าเหม็น

มนุษย์และสัตว์อื่น ๆ ยังปรับตัวชินกับกลิ่นได้อย่างรวดเร็ว ดังที่พบเมื่อกลิ่นจางไปเมื่อเริ่มชินแล้ว โดยสามารถฟื้นสภาพได้อย่างรวดเร็วเมื่อเอากลิ่นออกชั่วคราว การปรับตัวเข้ากับกลิ่นอาศัยการปรับควบคุมช่องไอออน (modulation of the cyclic nucleotide-gated ion channel) เป็นบางส่วน แต่กลไกที่ทำให้ฟื้นสภาพอย่างรวดเร็วก็ยังไม่ชัดเจน

ส่วนใยประสาทรับกลิ่นจะส่งข้อมูลกลิ่นจากเซลล์ประสาทรับกลิ่น ไปยังระบบรับกลิ่นส่วนกลางในสมอง ซึ่งแบ่งแยกจากเยื่อรับกลิ่นด้วยแผ่นกระดูกพรุน (cribriform plate) ของกระดูกเอทมอยด์ คือใยประสาทรับกลิ่นจากเยื่อรับกลิ่นจะวิ่งผ่านแผ่นกระดูกพรุนไปยังป่องรับกลิ่น (olfactory bulb) ในซีกร่างกายเดียวกัน ซึ่งเป็นส่วนของระบบลิมบิก

ระบบรับกลิ่นส่วนกลาง

แผนภาพนี้แสดงโครงสร้างประสาทที่รู้จักทั้งหมด ซึ่งได้รับหรือส่งข้อมูลกลิ่น คือเป็นแผนภาพที่แสดงวิถีประสาทรู้กลิ่น

ในบรรดาระบบรับความรู้สึก ระบบรับกลิ่นพิเศษกว่าประสาทสัมผัสอื่น ๆ เพราะระบบส่วนนอกไม่ได้ส่งกระแสประสาทผ่านทาลามัสไปยังโครงสร้างอื่น ๆ ในระบบประสาทส่วนกลาง แต่เซลล์ประสาทรับกลิ่นจะส่งแอกซอนรวมเป็นมัด ๆ จำนวนมากซึ่งเรียกรวมกันว่าฆานประสาท (olfactory nerve, CN I) ไปยังป่องรับกลิ่นในซีกร่างกายเดียวกัน โดยทำหน้าที่แทนทาลามัสในการส่งข้อมูลกลิ่นต่อโดยตรงไปยังโครงสร้างต่าง ๆ ของเปลือกสมองส่วนการได้กลิ่น (olfactory cortex)

ป่องรับกลิ่น (olfactory bulb)

ข้อมูลเพิ่มเติม: ป่องรับกลิ่น

ฆานประสาทจะมีปลายแอกซอนไปสุดที่ส่วนโกลเมอรูลัสของป่องรับกลิ่น โดยเป็นไซแนปส์เชื่อมกับเดนไดรต์ของเซลล์ประสาทรีเลย์ คือ เซลล์ไมทรัลและ tufted cell

ซึ่งเมื่อร่วมกับ interneuron อื่น ๆ ในป่องรับกลิ่นแล้ว จะช่วยระบุความเข้มข้นของกลิ่นโดยขึ้นอยู่กับเวลาที่กลุ่มเซลล์ประสาทส่งสัญญาณ (เป็น timing code) เซลล์เหล่านี้ยังรู้ความแตกต่างระหว่างกลิ่นที่คล้ายกันมาก และให้ข้อมูลนั้นเพื่อช่วยการรู้จำและระบุกลิ่นสำหรับการประมวลผลในสมองขั้นต่อไป เซลล์สองอย่างนี้ต่างกันคือ เซลล์ไมทรัลมีอัตราการยิงสัญญาณต่ำโดยเซลล์ข้างเคียงสามารถยับยั้งได้ง่าย เทียบกับ tufted cell ที่มีอัตราการยิงสัญญาณสูงและยากที่จะยับยั้ง เซลล์ทั้งสองอย่างเป็นตัวส่งสัญญาณจากป่องรับกลิ่นผ่าน lateral olfactory tract ไปยังเปลือกสมองส่วนรู้กลิ่นโดยตรง

เปลือกสมองส่วนรู้กลิ่น (olfactory cortex)

เปลือกสมองส่วนรู้กลิ่น (อังกฤษ: olfactory cortex) โดยคร่าว ๆ หมายถึง เขตต่าง ๆ ในเปลือกสมองที่ได้รับกระแสประสาทคือเชื่อมต่อกับป่องรับกลิ่น (olfactory bulb) โดยตรง และประกอบด้วยเขต 5 เขต คือ

  1. anterior olfactory nucleus ซึ่งเชื่อมป่องรับกลิ่นทั้งสองซีกผ่านส่วนหนึ่งของ anterior commissure
  2. cortical nuclei of the amygdala
  3. olfactory tubercle
  4. entorhinal cortex
  5. piriform cortex ซึ่งพิจารณาว่าเป็นส่วนหลักในเปลือกสมองที่แปลผลข้อมูลกลิ่น

olfactory tubercle เชื่อมกับเขตสมองต่าง ๆ มากมายรวมทั้งอะมิกดะลา ทาลามัส ไฮโปทาลามัส ฮิปโปแคมปัส ก้านสมอง จอตา เปลือกสมองส่วนการได้ยิน (auditory cortex) และระบบรับกลิ่น โดยมีข้อมูลขาเข้า 27 แหล่ง และส่งข้อมูลไปยัง 20 เขตในสมอง ถ้ากล่าวแบบง่าย ๆ ก็คือ ส่วนนี้มีหน้าที่

  • เช็คให้แน่นอนว่า สัญญาณกลิ่นมาจากกลิ่นจริง ๆ ไม่ใช่จากความระคายเคืองที่อวัยวะรับกลิ่น
  • ควบคุมพฤติกรรม (โดยหลักพฤติกรรมทางสังคมและพฤติกรรมตามรูปแบบ [stereotypical]) ที่มีเหตุจากกลิ่น
  • ประสานข้อมูลทางหูและทางจมูกเพื่อสนับสนุนพฤติกรรมดังว่าให้สำเร็จ
  • มีบทบาทส่งสัญญาณเชิงบวกไปยังระบบรางวัล (และดังนั้น จึงมีส่วนในพฤติกรรมการติด)

ส่วน stria terminalis โดยเฉพาะ bed nuclei (BNST) จะทำหน้าที่เป็นวิถีประสาทระหว่างอะมิกดะลากับไฮโปทาลามัส และระหว่างไฮโปทาลามัสกับต่อมใต้สมอง ความผิดปกติใน BNST บ่อยครั้งทำให้เกิดความสับสนทางเพศ (sexual confusion) หรือความไม่เจริญเต็มวัยทางเพศ (sexual immaturity) BNST ยังเชื่อมกับเขต septal nuclei ซึ่งให้รางวัลต่อพฤติกรรมทางเพศ

แม้ฮิปโปแคมปัสจะเชื่อมต่อกับป่องรับกลิ่นโดยตรงน้อยมาก แต่ก็ได้ข้อมูลทางกลิ่นของมันทั้งหมดผ่านอะมิกดะลา ไม่ว่าจะโดยตรงหรือโดยผ่าน BNST ฮิปโปแคมปัสจะสร้างความจำใหม่หรือเสริมแรงความจำเก่า

ส่วนรอบ ๆ ฮิปโปแคมปัส (parahippocampus) จะเข้ารหัส รู้จำ และสร้างบริบทเกี่ยวกับสถานการณ์หนึ่ง ๆ รอยนูนรอบฮิปโปแคมปัสยังเป็นที่อยู่ของแผนที่ภูมิลักษณ์ (topographical map) ของการได้กลิ่นอีกด้วย

ส่วน anterior olfactory nucleus จะเป็นตัวแจกจ่ายกระแสประสาทกลับไปกลับมาระหว่างป่องรับกลิ่นและ piriform cortex และเป็นศูนย์ความจำของกลิ่น

Piriform cortex

Piriform cortex เป็น archicortex แบบมี 3 ชั้นที่พิจารณาว่าเก่าแก่กว่าทางวิวัฒนาการเมื่อเทียบกับคอร์เทกซ์ใหม่ เป็นส่วนในสมองที่มีหน้าที่เฉพาะต่ออการได้กลิ่น ข้อมูลกลิ่นจาก Piriform cortex จะส่งผ่านทาลามัสไปยังเขตประสาน (association areas) ต่าง ๆ ในคอร์เทกซ์ใหม่ การทำงานของ Piriform cortex ร่วมกับเขตประสานงานเชื่อว่า จำเป็นต่อการรู้กลิ่นเหนือสำนึกและการจับคู่กลิ่นกับสิ่งเร้าอื่น ๆ ในสิ่งแวดล้อม ข้อมูลกลิ่นจาก Piriform cortex ยังส่งโดยตรงไปยังสมองส่วนหน้าอื่น ๆ รวมทั้งอะมิกดะลาและไฮโปทาลามัส ซึ่งมีผลต่อการตอบสนองทางการเคลื่อนไหว ทางสรีรภาพ และทางอารมณ์ โดยเฉพาะที่เกี่ยวข้องกับอาหาร การสืบพันธุ์ และความดุ

เซลล์ประสาทแบบพีระมิดของ Piriform cortex ได้รับสัญญาณแบบเร้าจากแอกซอนของเซลล์รีเลย์ของป่องรับกลิ่นคือเซลล์ไมทรัลและ tufted cell เป็นแอกซอนที่มาจากลำเส้นใยประสาท lateral olfactory tract ตัวเซลล์พิรามิดก็เป็นเซลล์ที่ส่งสัญญาณ (projection neuron) ออกจากคอร์เทกซ์เองโดยได้รับสัญญาณยับยั้งจาก interneuron แบบกาบาที่อยู่ในคอร์เทกซ์เหมือนกัน และสัญญาณเร้าจากเซลล์พิรามิดข้าง ๆ ด้วย นอกจากนั้น คอร์เทกซ์ยังได้รับสัญญาณจากเขตควบคุมอื่น ๆ ในสมอง ซึ่งแสดงนัยว่า การทำงานของคอร์เทกซ์อาจเป็นไปตามสถานะทางพฤติกรรมของสัตว์ และตัวคอร์เทกซ์เองก็ส่งสัญญาณควบคุมไปยังป่องรับกลิ่นด้วย

แม้เซลล์พิรามิดหนึ่ง ๆ อาจจะทำงานตอบสนองต่อกลิ่นหนึ่ง ๆ เหมือนกับเซลล์รีเลย์ของป่องรับกลิ่น แต่เซลล์พิรามิดที่ตอบสนองต่อกลิ่นหนึ่ง ๆ ก็อยู่กระจายไปทั่วคอร์เทกซ์ซึ่งต่างจากการจัดระเบียบของป่องรับกลิ่น และแสดงว่า การจัดระเบียบเซลล์ที่ตอบสนองต่อกลิ่นต่าง ๆ อย่างเป็นระเบียบดังที่พบในป่องรับกลิ่น ไม่ได้เกิดอย่างเหมือน ๆ กันใน piriform cortex

อะมิกดะลา

การเรียนรู้แบบเชื่อมโยง (Associative learning) ซึ่งเชื่อมกลิ่นและการตอบสนองทางพฤติกรรมจะเกิดที่อะมิกดะลา กลิ่นจะเป็นตัวเสริมแรงหรือตัวตัดแรงเมื่อกำลังเรียนรู้แบบเชื่อมโยง กลิ่นซึ่งเกิดในภาวะที่ดี จะเสริมแรงพฤติกรรมที่ทำให้เกิดภาวะที่ดี ในขณะที่กลิ่นซึ่งเกิดในภาวะที่ไม่ดีก็จะมีผลตรงกันข้าม กลิ่นที่รู้จะเข้ารหัสที่อะมิกดะลาคู่กับผลทางพฤติกรรมหรือกับอารมณ์ที่ได้เนื่องจากพฤติกรรม โดยกระบวนการนี้ กลิ่นจึงอาจสะท้อนถึงอารมณ์หรือสภาวะทางสรีรภาพบางอย่าง เมื่อกลิ่นได้สัมพันธ์กับการตอบสนองที่เป็นสุขหรือเป็นทุกข์ ในที่สุดมันก็จะกลายเป็นตัวทำให้เกิดการตอบสนองทางอารมณ์เอง เช่น เกิดความกลัว การสร้างภาพประสาทได้แสดงว่า อะมิกดะลาจะทำงานสัมพันธ์กับการได้กลิ่นที่ไม่ดี ซึ่งสะท้อนความสัมพันธ์ระหว่างกลิ่นกับอารมณ์

อะมิกดะลาเนื่องกับระบบรับกลิ่นเสริมจะจะแปลผลเกี่ยวกับสารฟีโรโมน ซึ่งทำให้สัตว์อื่นในสปีชีส์เดียวกันตอบสนองทางสังคม, เกี่ยวกับ allomone ซึ่งให้ประโยชน์แก่ผู้ออกกลิ่นแต่ไม่ได้ให้แก่ผู้รับกลิ่นซึ่งเป็นสัตว์คนละสปีชีส์ allomone รวมทั้งกลิ่นดอกไม้ สารฆ่าวัชพืชตามธรรมชาติ และพิษของพืชตามธรรมชาติ, และเกี่ยวกับ kairomone ซึ่งให้ประโยชน์แก่ผู้รับกลิ่นคนละสปีชีส์ แต่มีผลลบต่อผู้ออกกลิ่น ข้อมูลเช่นนี้ มาจากอวัยวะ vomeronasal organ (VNO) ในจมูกโดยอ้อมผ่านป่องรับกลิ่น แต่เนื่องจากวิวัฒนาการของสมองใหญ่ การประมวลผลนี้ได้ลดความสำคัญลงและดังนั้น ปกติจะไม่เกิดผลที่สังเกตเห็นได้ในปฏิสัมพันธ์ทางสังคมของมนุษย์ คือ นอกจากมนุษย์โดยมากจะไม่มี VNO แล้ว ก็ยังไม่มีส่วนในป่องรับกลิ่นที่จัดเป็นส่วนรับข้อมูลโดยเฉพาะจาก VNO อีกด้วย นอกจากนั้น ในอะมิกดะลา กระแสประสาทจากป่องรับกลิ่นจะใช้จับคู่กลิ่นกับชื่อและเพื่อแยกแยะรู้จำกลิ่นต่าง ๆ

ฮิปโปแคมปัส

ฮิปโปแคมปัสช่วยให้สามารถจำและเรียนรู้เกี่ยวกับกลิ่นได้ มีกระบวนการเกี่ยวกับความจำเนื่องกับกลิ่นหลายอย่างในฮิปโปแคมปัส คล้ายกับที่เกิดในอะมิกดะลา กลิ่นจะสัมพันธ์กับรางวัล/ความรู้สึกดี ๆ ที่ได้ เช่น กลิ่นอาหารที่สัมพันธ์กับการได้อาหารประทังชีวิต

ข้อมูลกลิ่นที่ฮิปโปแคมปัสยังช่วยสร้างความจำอาศัยเหตุการณ์ (episodic memory) อีกด้วย ซึ่งเป็นความจำของเหตุการณ์ต่าง ๆ ณ สถานที่หรือ ณ เวลาหนึ่ง ๆ โดยเฉพาะ เวลาที่นิวรอนโดยเฉพาะหนึ่ง ๆ ยิงสัญญาณในฮิปโปแคมปัสจะสัมพันธ์กับเซลล์ประสาทที่ทำงานเนื่องกับสิ่งเร้าเช่นกลิ่น การได้กลิ่นเดียวกันในเวลาอื่น อาจทำให้ระลึกถึงความจำนั้น ดังนั้น กลิ่นจึงสามารถช่วยให้ระลึกถึงเหตุการณ์หนึ่ง ๆ ได้

ฮิปโปแคมปัสและอะมิกดะลา จะมีอิทธิพลต่อการรับรู้กลิ่น ในช่วงที่เกิดภาวะทางสรีรภาพบางอย่าง เช่น หิว กลิ่นอาหารอาจจะดีกว่าและให้รางวัลมากกว่า เพราะความสัมพันธ์ระหว่างกลิ่นอาหารกับรางวัลเนื่องกับการกิน ที่มีอยู่ในอะมิกดะลาและฮิปโปแคมปัส

ไฮโปทาลามัส

ไฮโปทาลามัสได้รับข้อมูลกลิ่นจากทั้งป่องรับกลิ่นหลักโดยอ้อมผ่านส่วนต่าง ๆ ของเปลือกสมองส่วนรู้กลิ่นรวมทั้ง pyriform cortex, olfactory tubercle, อะมิกดะลา และ enterorhinal cortex และจากป่องรับกลิ่นเสริมผ่านอะมิกดะลาส่วนใน (medial) เขตลิมบิกเหล่านี้มีหน้าที่เกี่ยวกับความอยากอาหาร การสืบพันธุ์ รวมทั้งอารมณ์ แรงจูงใจ พฤติกรรม และการตอบสนองทางสรีรภาพเกี่ยวกับกลิ่น ในสัตว์ นี่อาจสำคัญต่อพฤติกรรมตอบสนองแบบเป็นรูปแบบและการตอบสนองทางสรีรภาพต่อกลิ่นของสัตว์ล่าเหยื่อหรือต่อฟีโรโมน

orbitofrontal cortex

ข้อมูลกลิ่นจะส่งไปยังเปลือกสมองส่วนรับกลิ่น (olfactory cortex) ซึ่งก็จะส่งข้อมูลต่อไปยัง orbitofrontal cortex (OFC) โดยเป็นเขตที่เชื่อว่าสำคัญต่อการแยกแยะกลิ่นเพราะคนไข้ที่ OFC เสียหายจะไม่สามารถแยกแยะกลิ่นได้ นอกจากนั้น ยังปรากฏว่า OFC ได้รับสัญญาณจากประสาทสัมผัสอื่น ๆ ยกตัวอย่างเช่น มันอาจตอบสนองต่อการเห็น การได้กลิ่น และรสชาติของกล้วย

OFC ยังสัมพันธ์อย่างใกล้ชิดกับ cingulate gyrus และ septal area ในพฤติกรรมกรรมเสริมแรงทั้งเชิงลบเชิงบวก OFC จะเป็นตัวกำหนดความคาดหวังว่าจะได้ผลดี/รางวัล หรือผลร้าย เมื่อตอบสนองต่อสิ่งเร้า OFC จะทำงานเป็นตัวแทนอารมณ์และรางวัลในการตัดสินใจ

OFC ได้ข้อมูลกลิ่นจาก piriform cortex, อะมิกดะลา, และคอร์เทกซ์รอบ ๆ ฮิปโปแคมปัส เมื่อเซลล์ประสาทใน OFC ที่เข้ารหัสข้อมูลรางวัลของอาหารได้รับสิ่งเร้า ระบบรางวัลก็จะเริ่มทำงานแล้วสัมพันธ์การกินอาหารและรางวัล OFC ยังส่งข้อมูลต่อไปยัง anterior cingulate cortex ซึ่งมีบทบาทเกี่ยวกับความอยากอาหาร อนึ่ง OFC ยังสัมพันธ์กลิ่นกับสิ่งเร้าอื่น ๆ อีกด้วย เช่น รสชาติ

การรับรู้และการแยกแยะกลิ่นก็เกี่ยวข้องกับ OFC ด้วย โดยแผนที่กลิ่นในชั้นโกลเมอรูลัสของป่องรับกลิ่น อาจมีบทบาทในหน้าที่เหล่านี้ คือการตอบสนองต่อกลิ่นโดยเฉพาะ ๆ ด้วยการทำงานของโกลเมอรูลัสเป็นหมู่โดยเฉพาะ ๆ จะช่วยเปลือกสมองส่วนรับกลิ่นในการแปลผลเพื่อรับรู้และแยกแยะกลิ่น

การตอบสนองทางสรีรภาพและพฤติกรรม

นอกจากจะทำให้ได้กลิ่นแล้ว สัตว์อาจตอบสนองทางสรีรภาพและทางพฤติกรรมต่อกลิ่นต่าง ๆ รวมทั้ง

  • การตอบสนองของอวัยวะภายในต่อกลิ่นอาหารที่น่าทานรวมทั้งน้ำลายไหลและท้องร้อง
  • การตอบสนองของอวัยวะภายในต่อกลิ่นเหม็นเช่นคลื่นไส้และในกรณีที่รุนแรง อาเจียน
  • การตอบสนองทางเพศและทางการทำงานของต่อมไร้ท่อ เช่น หญิงที่พักอาศัยในหอพักหญิงมักจะมีประจำเดือนพร้อม ๆ กัน หญิงที่ได้กลิ่นผ้ากอซซึ่งแปะที่รักแร้ของหญิงอื่น ๆ มักจะมีประจำเดือนพร้อมกัน ซึ่งขัดได้ถ้าให้ดมผ้ากอซที่แปะใต้รักแร้ของชาย
  • ทารกจะรู้จักแม่ของตนโดยกลิ่นภายในไม่กี่ชั่วโมงหลังเกิด และมักจะดูดนมมากกว่าเมื่อได้กลิ่นแม่ของตนและน้อยกว่าเมื่อได้กลิ่นหญิงมีน้ำนมอื่น ๆ
  • แม่สามารถแยกกลิ่นลูกของตนจากทารกวัยเดียวกันอื่น ๆ อย่างเชื่อถือได้
  • สัตว์อื่นนอกจากมนุษย์มีพฤติกรรมตอบสนองทางสังคม ทางการสืบพันธุ์ และทางการเลี้ยงลูก เนื่องจากกลิ่นฟีโรโมนที่ได้จาก vomeronasal organ
  • แม้มนุษย์เพียงแค่ 8% จะมี vomeronasal organ และหน่วยรับความรู้สึกของอวัยวะเช่นนี้ไม่ปรากฏว่าแสดงออกในมนุษย์ แต่มนุษย์ชายหญิงก็ยังตอบสนองด้วยพฤติกรรมและด้วยการทำงานของเขตต่าง ๆ ในสมองอย่างไม่เหมือนกันต่อฮอร์โมนเพศคือแอนโดรเจน (ชาย) และเอสโตรเจน (หญิง) แม้ฮอร์โมนจะอยู่ในระดับที่ตรวจจับไม่ได้เหนือจิตสำนึก เขตหลัก ๆ ในสมองที่ตอบสนองรวมทั้งไฮโปทาลามัสและอะมิกดะลา ซึ่งเชื่อว่ามีอิทธิพลต่อพฤติกรรมทางสังคม ทางการสืบพันธุ์ และทางสังคม

การแยกแยะกลิ่น

งานศึกษาที่ได้เผยแพร่อย่างกว้างขวางเสนอว่า มนุษย์สามารถตรวจจับกลิ่นได้กว่า 1 ล้านล้านกลิ่น แต่นักวิชาการอื่นก็คัดค้านผลงานนี้ โดยอ้างว่า วิธีที่ใช้ประเมินมีข้อผิดพลาดโดยหลัก และแสดงว่า ถ้าใช้วิธีเดียวกันกับประสาทสัมผัสที่มีข้อมูลและความเข้าใจที่ดีกว่า เช่นการเห็นหรือการได้ยิน ก็จะนำไปสู่ข้อสรุปผิด ๆ นักวิจัยอื่น ๆ แสดงแล้วด้วยว่า ผลคือจำนวนที่ได้จะไวมากต่อรายละเอียดต่าง ๆ ในการคำนวณ และความแตกต่างเล็ก ๆ น้อย ๆ จะเปลี่ยนผลที่ได้โดยเป็นอันดับของขนาดเริ่มตั้งแต่ถึงโหล ๆ จนถึง 2-3 พัน ส่วนนักวิชาการในงานศึกษาแรกก็ได้อ้างว่า ค่าประเมินของตนจะใช้ได้ตราบเท่าที่สามารถสมมุติได้ว่า โมเลกุลกลิ่นมีจำนวนมิติต่าง ๆ อย่างเพียงพอ

นักเคมีเกี่ยวกับกลิ่นได้ประเมินว่า มนุษย์อาจสามารถแยกแยะกลิ่นระเหยได้ถึง 10,000 รูปแบบ โดยที่ผู้เชี่ยวชาญเกี่ยวกับของหอมอาจแยกแยะกลิ่นได้ถึง 5,000 ชนิด และผู้เชี่ยวชาญเกี่ยวกับไวน์อาจแยกแยะส่วนผสมได้ถึง 100 อย่าง โดยสามารถรู้กลิ่นต่าง ๆ ได้ที่ความเข้มข้นต่าง ๆ กัน เช่น สามารถรู้กลิ่นสารกลิ่นหลักของพริกชี้ฟ้า คือ (2-isobutyl-3-methoxypyrazine) ในอากาศที่ความเข้มข้น 0.01 นาโนโมล ซึ่งประมาณเท่ากับ 1 โมเลกุลต่อ 1,000 ล้านโมเลกุล สามารถรู้กลิ่นเอทานอลที่ความเข้มข้น 2 มิลลิโมล และสามารถรู้กลิ่นโครงสร้างทางเคมีที่ต่างกันเล็กน้อยในระดับโมเลกุล เช่น D-carvone และ L-carvone จะมีกลิ่นเหมือนเทียนตากบและมินต์ตามลำดับ

ถึงกระนั้น การได้กลิ่นก็พิจารณาว่าเป็นประสาทสัมผัสที่แย่ที่สุดอย่างหนึ่งในมนุษย์ โดยมีสัตว์อื่น ๆ ที่รู้กลิ่นได้ดีกว่า เช่น สัตว์เลี้ยงลูกด้วยนมเกินกว่าครึ่ง ซึ่งอาจเป็นเพราะมนุษย์มีประเภทหน่วยรับกลิ่นที่น้อยกว่า และมีเขตในสมองส่วนหน้าที่อุทิศให้กับการแปลผลข้อมูลกลิ่นที่เล็กกว่าโดยเปรียบเทียบ

กำเนิดประสาทในผู้ใหญ่

ข้อมูลเพิ่มเติม: กำเนิดประสาท

ป่องรับกลิ่นบวกกับ dentate gyrus ส่วน subventricular zone และ subgranular zone ของฮิปโปแคมปัส เป็นโครงสร้างสามอย่างในสมองที่ได้พบกำเนิดเซลล์ประสาท (neurogenesis) อย่างต่อเนื่องในสัตว์เลี้ยงลูกด้วยนมที่โตแล้ว ในสัตว์เลี้ยงลูกด้วยนมโดยมาก เซลล์ประสาทใหม่จะเกิดจากเซลล์ประสาทต้นกำเนิด (neural stem cell) ในเขต subventricular zone แล้วย้ายที่ไปทางจมูกสู่ป่องรับกลิ่นหลัก และป่องรับกลิ่นเสริม โดยผ่านทาง rostral migratory stream (RMS)

ภายในป่องรับกลิ่น เซลล์ประสาท neuroblast ที่ยังไม่โตเต็มที่เช่นนี้ จะพัฒนาเป็น granule cell และเซลล์รอบโกลเมอรูลัสซึ่งเป็น interneuron ที่อยู่ในชั้นของตน ๆ แม้เซลล์ประสาทรับกลิ่นก็สามารถเกิดใหม่จากเซลล์ต้นกำเนิดซึ่งอยู่ที่ฐานของเยื่อรับกลิ่น ดังนั้น แอกซอนของเซลล์รับกลิ่นก็จะงอกใหม่ไปที่ป่องรับกลิ่นด้วย แม้จะมีการทดแทนสร้างแอกซอนของเซลล์รับกลิ่นและ interneuron อยู่เสมอ ๆ เซลล์ที่ส่งสัญญาณต่อ (คือเซลล์ไมทรัลและ tufted cell) ซึ่งมีไซแนปส์กับโครงสร้างเหล่านั้น ก็ไม่ใช่ว่าจะเปลี่ยนแปลงได้ แต่กระบวนการที่ให้กำเนิดประสาทในเขตนี้ ก็ยังเป็นประเด็นการศึกษาอยู่

การรอดชีวิตของเซลล์ประสาทที่พัฒนายังไม่สมบูรณ์เมื่อเข้าไปในวงจรประสาทเช่นนี้ อ่อนไหวมากต่อการทำงานของระบบรับกลิ่น โดยเฉพาะในเรื่องการเรียนรู้แบบเชื่อมโยง ซึ่งทำให้เกิดสมมติฐานว่า เซลล์ประสาทใหม่จะเกิดเพื่อบทบาทในกระบวนการเรียนรู้ แต่งานทดลองที่ขัดขวางการทำงานก็ไม่พบผลทางพฤติกรรมที่ชัดเจน ซึ่งแสดงว่า บทบาทในหน้าที่นี้ของระบบรับกลิ่น ถ้ามีโดยประการทั้งปวง อาจจะละเอียดและรู้ได้ยาก

กำเนิดประสาทคือการทดแทนเซลล์ประสาทที่โตแล้วเช่นนี้เป็นเรื่องไม่ทั่วไปในระบบประสาท ซึ่งเป็นเรื่องที่น่าสนใจอย่างยิ่งทางการแพทย์ โมเลกุลต่าง ๆ ที่มีผลต่อการแปรสภาพ การงอกของแอกซอน และการตั้งไซแนปส์ ซึ่งพบในช่วงพัฒนาการประสาท ก็ยังใช้ด้วยในการทดแทนเซลล์ประสาทรับกลิ่นในผู้ใหญ่ การเข้าใจกระบวนการเช่นนี้อาจช่วยให้นักวิทยาศาสตร์สามารถกระตุ้นให้ระบบประสาทกลางอื่น ๆ สามารถฟื้นตัวหลังการบาดเจ็บหรือการเกิดโรคในอนาคต

ความสำคัญทางการแพทย์

มนุษย์อาจได้กลิ่นไวต่างกันเป็นพันเท่า แม้ในบุคคลปกติ ความผิดปกติซึ่งสามัญที่สุดก็คือการไม่ได้กลิ่นหนึ่ง ๆ โดยเฉพาะ (specific anosmia) แม้อาจได้กลิ่นอื่น ๆ เป็นปกติ และอาจสามัญถึง 1-20% ในกลุ่มประชากร โดยอาจเกิดจากการกลายพันธุ์ของยีนหน่วยรับกลิ่นหนึ่ง ๆ หรือของยีนที่ควบคุมการแสดงออกหรือการทำงานของหน่วยรับกลิ่นหนึ่ง ๆ แต่เหตุความผิดปกติเยี่ยงนี้ก็ยังไม่ได้การตรวจสอบทางพันธุกรรม และต่างจากความผิดปกติทางตาหรือหูเพราะแยกแยะได้ยากว่าเป็นความผิดปกติในอวัยวะส่วนนอกหรือสมองส่วนกลาง

การสูญการรับรู้กลิ่นเรียกว่า ภาวะเสียการรู้กลิ่น (anosmia) ซึ่งเกิดที่ข้างเดียวหรือทั้งสองข้างของจมูก บ่อยครั้งเกิดชั่วคราวโดยเป็นผลของการติดเชื้อ และไม่เป็นอะไรที่น่าเป็นห่วงแม้อาจทำให้อาหารไม่อร่อยบ้าง แต่ถ้าเป็นอย่างรุนแรงหรือเรื้อรัง อาจมีผลต่อความอยากอาหาร เป็นเหตุทำให้น้ำหนักลดและทำให้เกิดภาวะทุพโภชนาการ ทำให้ไม่สามารถได้กลิ่นที่อาจเป็นอันตรายเช่นอาหารที่เสีย ควันไฟ และสารเติมแต่งที่ใส่ในแก๊สหุงต้มเพื่อให้ได้กลิ่นเมื่อแก๊สรั่ว

ปัญหาการได้กลิ่นมีหลายแบบ การทำหน้าที่ผิดปกติอาจจะเป็นแบบไม่ได้กลิ่นเลย (anosmia - ภาวะเสียการรู้กลิ่น) ได้กลิ่นบ้าง (partial anosmia, hyposmia, หรือ microsmia) ได้กลิ่นผิดปกติ (dysosmia) หรืออาจจะเป็นการได้กลิ่นที่ไม่มี เช่น phantosmia (การหลอนได้กลิ่น) ส่วนความไม่สามารถรู้จำกลิ่นแม้จะมีระบบรับกลิ่นที่ทำงานอย่างปกติเรียกว่า olfactory agnosia ส่วน Hyperosmia เป็นภาวะที่มีน้อยและมีอาการได้กลิ่นมากผิดปกติ เหมือนกับการเห็นและการได้ยิน ปัญหาการได้กลิ่นอาจเป็นทั้งสองข้าง (bilateral) หรือข้างเดียว (unilateral) ซึ่งหมายความว่า ถ้าไม่ได้กลิ่นเลยทางจมูกด้านขวาแต่ได้กลิ่นด้านซ้าย มันก็เรียกว่าภาวะเสียการรู้กลิ่นข้างขวา (unilateral right anosmia) แต่ถ้าไม่ได้กลิ่นทั้งสองข้าง ก็จะเรียกว่าภาวะเสียการรู้กลิ่นทั้งสองข้าง (bilateral anosmia) หรือ total anosmia

ความเสียหายต่อป่องรับกลิ่น ลำเส้นใยประสาท และเปลือกสมองการได้กลิ่นหลัก (คือ brodmann area 34) มีผลเป็นภาวะเสียการรู้กลิ่นในด้านที่เสียหาย อนึ่ง รอยโรค/อาการบวมที่สมองส่วน uncus จะมีผลเป็นการหลอนได้กลิ่น

ความเสียหายต่อระบบรับกลิ่นอาจเกิดจากการบาดเจ็บในกะโหลกศีรษะ มะเร็ง การติดเชื้อ การสูดควันพิษ หรือโรคประสาทเสื่อมเช่น โรคพาร์คินสันหรือโรคอัลไซเมอร์ ปัญหาเหล่านี้ล้วนสามารถเป็นเหตุให้เสียการรู้กลิ่น (anosmia) งานศึกษาปี 2555 เสนอว่า การทำงานผิดปกติของการรับกลิ่นในระดับโมเลกุล สามารถใช้เป็นตัวระบุโรคที่ทำให้เกิดแอมีลอยด์ และอาจเป็นเหตุให้ได้กลิ่นผิดปกติโดยขัดการขนส่งและการเก็บไอออนโลหะแบบ multivalent ในร่างกาย แพทย์สามารถตรวจความเสียหายต่อระบบรับกลิ่นโดยให้คนไข้ดมกลิ่นแผ่นการ์ดที่ให้ขูดแล้วดม (scratch and sniff card) หรือให้คนไข้ปิดตาแล้วพยายามระบุกลิ่นทั่ว ๆ ไป เช่น กาแฟ หรือขนมต่าง ๆ แพทย์จะต้องกันโรคอื่น ๆ ที่ขัดหรือกำจัดการได้กลิ่น เช่น โรคหวัดเรื้อรัง โพรงอากาศอักเสบ ก่อนตัดสินวินิจฉัยว่า ระบบรับกลิ่นพิการอย่างถาวร

เหตุการทำงานผิดปกติของระบบรับกลิ่น

เหตุการทำงานผิดปกติของระบบรับกลิ่นรวมทั้งอายุมาก, การติดเชื้อไวรัส, การได้รับสารเคมีที่มีพิษ, การบาดเจ็บที่ศีรษะ, โรคประสาทเสื่อมต่าง ๆ (neurodegenerative disease), ความผิดปกติในการรับประทาน (eating disorder), ความผิดปกติทางจิต (psychotic disorders) โดยเฉพาะโรคจิตเภท, โรคเบาหวาน, และการใช้ยาบางประเภท

อายุ

อายุเป็นเหตุสำคัญที่สุดสำหรับความเสื่อมการได้กลิ่นในผู้ใหญ่ โดยมีผลมากยิ่งกว่าการสูบบุหรี่ ความเปลี่ยนแปลงต่อการได้กลิ่นเพราะอายุอาจเกิดโดยไม่ได้สังเกตเห็น อนึ่ง สมรรถภาพการได้กลิ่นเป็นสิ่งที่แพทย์ไม่ค่อยตรวจ ไม่เหมือนกับการได้ยินหรือการเห็น 2% ของบุคคลอายุต่ำกว่า 65 ปีจะมีปัญหาการได้กลิ่นอย่างเรื้อรัง แต่จะเพิ่มขึ้นอย่างมากสำหรับผู้มีอายุระหว่าง 65-80 โดยครึ่งหนึ่งจะมีปัญหาอย่างสำคัญ พอถึงอายุ 80 อัตราจะเพิ่มขึ้นเกือบถึง 75%

เมื่อตรวจบุคคลสุขภาพปกติให้ดมกลิ่นที่สามัญต่าง ๆ เป็นจำนวนมาก คนอายุระหว่าง 20-40 ปีจะระบุกลิ่นได้ถึง 50-75% แต่เมื่อถึงอายุ 50-70 ปี จะระบุได้เพียง 30-45% เหตุของความเปลี่ยนแปลงเนื่องด้วยอายุรวมทั้งแผ่นกระดูกพรุนปิด ความเสียหายสะสมต่อเซลล์ประสาทรับกลิ่นเนื่องจากไวรัสและปัญหาอื่น ๆ ตลอดชีวิต การลดความไวกลิ่นของอวัยวะส่วนนอก และการทำงานที่เปลี่ยนไปในระบบประสาทส่วนกลาง

การติดเชื้อไวรัส

เหตุสามัญที่สุดของการได้กลิ่นน้อย (hyposmia) และภาวะเสียการรู้กลิ่น (anosmia) อย่างถาวรก็คือการติดเชื้อที่ทางเดินหายใจส่วนบน การทำงานผิดปกติเช่นนี้จะไม่ดีขึ้นและบางครั้งส่องถึงความเสียหายไม่ใช่ที่เยื่อรับกลิ่นเท่านั้น แต่ปัญหาที่โครงสร้างต่าง ๆ ในส่วนกลาง เพราะการติดไวรัสได้แพร่เข้าไปในสมอง โรคไวรัสรวมทั้งหวัดธรรมดา ตับอักเสบ ไข้หวัดใหญ่ โรคที่อาการคล้ายไข้หวัดใหญ่ รวมทั้งเริมด้วย แต่การติดเชื้อไวรัสโดยมากจะดูไม่ออกเพราะเบามากหรือไม่แสดงอาการเลย

การได้รับสารเคมีที่เป็นพิษ

การได้รับสารพิษในอากาศบ่อย ๆ เช่น สารฆ่าศัตรูพืชและสัตว์ ตัวทำละลาย และโลหะหนัก (แคดเมียม โครเมียม นิกเกิล และแมงกานีส) สามารถทอนสมรรถภาพการได้กลิ่น เพราะสารเหล่านี้ไม่เพียงทำเยื่อรับกลิ่นให้เสียหาย แต่มักจะเข้าไปในสมองได้ผ่านเมือกรับกลิ่น

การบาดเจ็บที่ศีรษะ

การทำงานผิดปกติของระบบรับกลิ่นเนื่องด้วยการบาดเจ็บทีศีรษะ จะขึ้นอยู่กับความหนักเบาและว่าเกิดการเพิ่มหรือการลดความเร็วอย่างรุนแรงของศีรษะหรือไม่ แรงกระทบที่สมองกลีบท้ายทอยและด้านข้าง จะมีผลเสียหายต่อระบบรับกลิ่นมากกว่าการกระทบสมองด้านหน้า

โรคประสาทเสื่อม

ประสาทแพทย์ได้ให้ข้อสังเกตว่า การได้กลิ่นผิดปกติเป็นอาการหลักของโรคประสาทเสื่อมหลายชนิด เช่น โรคอัลไซเมอร์และโรคพาร์คินสัน คนไข้พวกนี้โดยมากจะไม่รู้ว่าได้กลิ่นอย่างบกพร่องจนกระทั่งได้ตรวจ โดยในคนไข้ 85%-90% ระยะต้น ระบบประสาทส่วนกลางเกี่ยวกับกลิ่นจะทำงานลดลง ดังนั้น การทดสอบการได้กลิ่นโดยแผ่นการ์ดที่ให้ขูดแล้วดมจึงมักใช้เป็นส่วนของการตรวจโรคสมองเสื่อมเนื่องจากอายุและโรคประสาทเสื่อมอื่น ๆ

โรคประสาทเสื่อมอื่น ๆ ที่มีผลต่อความผิดปกติการได้กลิ่นรวมทั้งโรคฮันติงตัน, โรคสมองเสื่อมเหตุขาดเลือดหลายจุด (multi-infarct dementia), อะไมโอโทรฟิก แลเทอรัล สเกลอโรซิส, และโรคจิตเภท แต่โรคเหล่านี้ก็ยังมีผลต่อระบบรับกลิ่นน้อยกว่าโรคอัลไซเมอร์หรือโรคพาร์คินสัน อนึ่ง โรค Progressive supranuclear palsy และ Parkinsonism ก็สัมพันธ์กับปัญหาการได้กลิ่นโดยเล็กน้อย ข้อมูลเหล่านี้ทำให้เสนอว่า การทดสอบการได้กลิ่นอาจช่วยวินิจฉัยโรคประสาทเสื่อมหลายอย่าง

โรคประสาทเสื่อมที่มีปัจจัยทางพันธุกรรมก็สัมพันธ์กับความผิดปกติของการได้กลิ่นด้วย เช่น ที่พบในคนไข้โรคพาร์คินสันแบบเป็นในครอบครัว และคนไข้กลุ่มอาการดาวน์ งานศึกษาอื่น ๆ ยังได้สรุปแล้วด้วยว่า การเสียการได้กลิ่นสัมพันธ์กับปัญหาทางเชาวน์ปัญญา ไม่ใช่กับพยาธิสภาพแบบโรคอัลไซเมอร์

โรคฮันติงตันยังสัมพันธ์กับปัญหาในการระบุ การตรวจจับ การแยกแยะ และความจำเกี่ยวกับกลิ่น ปัญหาจะปรากฏอย่างแพร่หลายเริ่มเมื่อองค์ประกอบทางฟีโนไทป์ของโรคปรากฏขึ้น แม้จะไม่รู้ว่าปัญหาการได้กลิ่นจะเกิดก่อนนานแค่ไหนก่อนการแสดงออกทางฟีโนไทป์

สัตว์ตัวแบบโรคซึมเศร้า

งานศึกษาสัตว์ตัวแบบสำหรับโรคซึมเศร้า ได้แสดงความสัมพันธ์ระหว่างป่องรับกลิ่นกับอารมณ์และความจำ คือ การผ่าเอาป่องรับกลิ่นในหนูออก จะมีผลเป็นการเปลี่ยนแปลงทางโครงสร้างของอะมิกดะลากับฮิปโปแคมปัสและความเปลี่ยนแปลงทางพฤติกรรม ที่คล้ายกับของคนไข้โรคซึมเศร้า ดังนั้น นักวิจัยจึงใช้หนูที่ผ่าเอาป่องรับกลิ่นออกเพื่อศึกษายาแก้ซึมเศร้า

งานวิจัยได้แสดงว่า การเอาป่องรับกลิ่นออกในหนู จะทำให้เกิดการจัดระเบียบใหม่ของเดนไดรต์ ขัดขวางพัฒนาการของเซลล์ และลดสภาพพลาสติกทางประสาท (neuroplasticity) ในฮิปโปแคมปัส ความเปลี่ยนแปลงของฮิปโปแคมปัสเนื่องจากการเอาป่องรับกลิ่นออก จะสัมพันธ์กับความเปลี่ยนแปลงทางพฤติกรรมที่ใช้กำหนดโรคซึมเศร้า ซึ่งแสดงสหสัมพันธ์ระหว่างป่องรับกลิ่นกับอารมณ์

ประวัติ

นักชีววิทยาชาวอเมริกัน ศ. ดร. ลินดา บี บัก และ ศ. ดร. ริชาร์ด แอ็กเซิล ได้รับรางวัลโนเบลสำหรับผลงานในระบบการรับกลิ่น

เชิงอรรถ

แหล่งข้อมูลอื่น

  • วิกิมีเดียคอมมอนส์มีสื่อเกี่ยวกับ Olfactory system
Anatomy and Physiology - The Unity of Form and Function (2010)
  • Saladin, KS (2010a). "16.3 The Chemical Senses". Anatomy and Physiology: The Unity of Form and Function (5th ed.). New York: McGraw-Hill. pp. 595-599 (611-615). ISBN 978-0-39-099995-5.
Encyclopedia of Clinical Neuropsychology (2011)
  • Zasler, Nathan D (2011). Olfaction. Encyclopedia of Clinical Neuropsychology. Springer. pp. 1812–1815. doi:10.1007/978-0-387-79948-3. ISBN 978-0-387-79947-6. {{cite book}}: ไม่รู้จักพารามิเตอร์ |editors= ถูกละเว้น แนะนำ (|editor=) (help)
Neuroscience (2008)
  • "15 - The Chemical Senses". Neuroscience (4th ed.). Sinauer Associates. 2008a. pp. 363–393. ISBN 978-0-87893-697-7. {{cite book}}: ไม่รู้จักพารามิเตอร์ |editors= ถูกละเว้น แนะนำ (|editor=) (help)
Principles of Neural Science (2013)
  • Buck, Linda B; Bargmann, Cornelia I (2013). "32 - Smell and Taste: The Chemical Senses". Principles of Neural Science (5th ed.). United State of America: McGraw-Hill. pp. 712–734. ISBN 978-0-07-139011-8. {{cite book}}: |ref=harv ไม่ถูกต้อง (help); ไม่รู้จักพารามิเตอร์ |editors= ถูกละเว้น แนะนำ (|editor=) (help)
The Senses - A Comprehensive Reference (2008)
  • Wilson, DA (2008). 4.38 Olfactory Cortex. The Senses: A Comprehensive Reference. Vol. 4: Olfaction & Taste. Elsevier. {{cite book}}: |ref=harv ไม่ถูกต้อง (help); ไม่รู้จักพารามิเตอร์ |editors= ถูกละเว้น แนะนำ (|editor=) (help)
  • Doty, RL; Saito, K (2008). 4.46 Disorders of Taste and Smell. The Senses: A Comprehensive Reference. Vol. 4: Olfaction & Taste. Elsevier. pp. 858–884. {{cite book}}: |ref=harv ไม่ถูกต้อง (help); ไม่รู้จักพารามิเตอร์ |editors= ถูกละเว้น แนะนำ (|editor=) (help)

Новое сообщение